Suppr超能文献

过度的相互催化是有效进化的必要条件。

Excess mutual catalysis is required for effective evolvability.

机构信息

Weizmann Institute of Science, Rehovot, Israel.

出版信息

Artif Life. 2012 Summer;18(3):243-66. doi: 10.1162/artl_a_00064. Epub 2012 Jun 4.

Abstract

It is widely accepted that autocatalysis constitutes a crucial facet of effective replication and evolution (e.g., in Eigen's hypercycle model). Other models for early evolution (e.g., by Dyson, Gánti, Varela, and Kauffman) invoke catalytic networks, where cross-catalysis is more apparent. A key question is how the balance between auto- (self-) and cross- (mutual) catalysis shapes the behavior of model evolving systems. This is investigated using the graded autocatalysis replication domain (GARD) model, previously shown to capture essential features of reproduction, mutation, and evolution in compositional molecular assemblies. We have performed numerical simulations of an ensemble of GARD networks, each with a different set of lognormally distributed catalytic values. We asked what is the influence of the catalytic content of such networks on beneficial evolution. Importantly, a clear trend was observed, wherein only networks with high mutual catalysis propensity (p(mc)) allowed for an augmented diversity of composomes, quasi-stationary compositions that exhibit high replication fidelity. We have reexamined a recent analysis that showed meager selection in a single GARD instance and for a few nonstationary target compositions. In contrast, when we focused here on compotypes (clusters of composomes) as targets for selection in populations of compositional assemblies, appreciable selection response was observed for a large portion of the networks simulated. Further, stronger selection response was seen for high p(mc) values. Our simulations thus demonstrate that GARD can help analyze important facets of evolving systems, and indicate that excess mutual catalysis over self-catalysis is likely to be important for the emergence of molecular systems capable of evolutionlike behavior.

摘要

普遍认为,自催化构成了有效复制和进化的关键方面(例如,在 Eigen 的超循环模型中)。其他早期进化模型(例如 Dyson、Gánti、Varela 和 Kauffman 的模型)则涉及催化网络,其中交叉催化更为明显。一个关键问题是自催化(自我)和交叉催化(相互)之间的平衡如何影响模型进化系统的行为。使用分级自催化复制域(GARD)模型来研究这个问题,该模型以前被证明可以捕捉组成分子组装中复制、突变和进化的基本特征。我们对一组具有不同对数正态分布催化值的 GARD 网络进行了数值模拟。我们询问了这种网络的催化含量对有益进化的影响。重要的是,观察到了一个明显的趋势,即只有具有高相互催化倾向(p(mc))的网络才能允许组成体的多样性增加,准静态组成具有高复制保真度。我们重新审视了最近的一项分析,该分析表明在单个 GARD 实例和少数非稳态目标组成中选择很少。相比之下,当我们将焦点放在组成组装群体中的 compotypes(组成体簇)作为选择的目标时,我们观察到模拟的大部分网络都有明显的选择反应。此外,p(mc)值越高,选择反应越强。因此,我们的模拟表明 GARD 可以帮助分析进化系统的重要方面,并表明自催化过量的相互催化可能对于出现能够表现出类似进化行为的分子系统很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验