Suppr超能文献

谷氨酸转运体在神经退行性疾病中的作用及潜在干预机会。

The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention.

作者信息

Sheldon Amanda L, Robinson Michael B

机构信息

Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104-4318, United States.

出版信息

Neurochem Int. 2007 Nov-Dec;51(6-7):333-55. doi: 10.1016/j.neuint.2007.03.012. Epub 2007 Apr 19.

Abstract

Extracellular concentrations of the predominant excitatory neurotransmitter, glutamate, and related excitatory amino acids are maintained at relatively low levels to ensure an appropriate signal-to-noise ratio and to prevent excessive activation of glutamate receptors that can result in cell death. The latter phenomenon is known as 'excitotoxicity' and has been associated with a wide range of acute and chronic neurodegenerative disorders, as well as disorders that result in the loss of non-neural cells such as oligodendroglia in multiple sclerosis. Unfortunately clinical trials with glutamate receptor antagonists that would logically seem to prevent the effects of excessive receptor activation have been associated with untoward side effects or little clinical benefit. In the mammalian CNS, the extracellular concentrations of glutamate are controlled by two types of transporters; these include a family of Na(+)-dependent transporters and a cystine-glutamate exchange process, referred to as system X(c)(-). In this review, we will focus primarily on the Na(+)-dependent transporters. A brief introduction to glutamate as a neurotransmitter will be followed by an overview of the properties of these transporters, including a summary of the presumed physiologic mechanisms that regulate these transporters. Many studies have provided compelling evidence that impairing the function of these transporters can increase the sensitivity of tissue to deleterious effects of aberrant activation of glutamate receptors. Over the last decade, it has become clear that many neurodegenerative disorders are associated with a change in localization and/or expression of some of the subtypes of these transporters. This would suggest that therapies directed toward enhancing transporter expression might be beneficial. However, there is also evidence that glutamate transporters might increase the susceptibility of tissue to the consequences of insults that result in a collapse of the electrochemical gradients required for normal function such as stroke. In spite of the potential adverse effects of upregulation of glutamate transporters, there is recent evidence that upregulation of one of the glutamate transporters, GLT-1 (also called EAAT2), with beta-lactam antibiotics attenuates the damage observed in models of both acute and chronic neurodegenerative disorders. While it seems somewhat unlikely that antibiotics specifically target GLT-1 expression, these studies identify a potential strategy to limit excitotoxicity. If successful, this type of approach could have widespread utility given the large number of neurodegenerative diseases associated with decreases in transporter expression and excitotoxicity. However, given the massive effort directed at developing glutamate receptor agents during the 1990s and the relatively modest advances to date, one wonders if we will maintain the patience needed to carefully understand the glutamatergic system so that it will be successfully targeted in the future.

摘要

主要兴奋性神经递质谷氨酸及相关兴奋性氨基酸的细胞外浓度维持在相对较低水平,以确保适当的信噪比,并防止谷氨酸受体过度激活,否则可能导致细胞死亡。后一种现象被称为“兴奋毒性”,与多种急性和慢性神经退行性疾病以及导致非神经细胞(如多发性硬化症中的少突胶质细胞)丧失的疾病有关。不幸的是,使用谷氨酸受体拮抗剂的临床试验在逻辑上似乎可以预防受体过度激活的影响,但却伴随着不良副作用或临床益处甚微。在哺乳动物中枢神经系统中,谷氨酸的细胞外浓度由两种类型的转运体控制;这些包括一类钠依赖性转运体和一种胱氨酸 - 谷氨酸交换过程,称为系统Xc(-)。在本综述中,我们将主要关注钠依赖性转运体。在简要介绍谷氨酸作为神经递质之后,将概述这些转运体的特性,包括调节这些转运体的假定生理机制的总结。许多研究提供了令人信服的证据,表明损害这些转运体的功能会增加组织对谷氨酸受体异常激活的有害影响的敏感性。在过去十年中,已经清楚地表明,许多神经退行性疾病与这些转运体某些亚型的定位和/或表达变化有关。这表明针对增强转运体表达的疗法可能是有益的。然而,也有证据表明谷氨酸转运体可能会增加组织对诸如中风等导致正常功能所需的电化学梯度崩溃的损伤后果的易感性。尽管谷氨酸转运体上调存在潜在的不利影响,但最近有证据表明,用β-内酰胺抗生素上调其中一种谷氨酸转运体GLT-1(也称为EAAT2)可减轻急性和慢性神经退行性疾病模型中观察到的损伤。虽然抗生素特异性靶向GLT-1表达似乎不太可能,但这些研究确定了一种限制兴奋毒性的潜在策略。如果成功,鉴于大量与转运体表达降低和兴奋毒性相关的神经退行性疾病,这种方法可能具有广泛的实用性。然而,鉴于20世纪90年代在开发谷氨酸受体药物方面付出了巨大努力,而迄今为止进展相对有限,人们不禁要问,我们是否会保持耐心,仔细了解谷氨酸能系统,以便将来能够成功地靶向该系统。

相似文献

1
The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention.
Neurochem Int. 2007 Nov-Dec;51(6-7):333-55. doi: 10.1016/j.neuint.2007.03.012. Epub 2007 Apr 19.
4
Cholesterol depletion attenuates tonic release but increases the ambient level of glutamate in rat brain synaptosomes.
Neurochem Int. 2010 Feb;56(3):466-78. doi: 10.1016/j.neuint.2009.12.006. Epub 2009 Dec 16.
5
The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics.
Neuropharmacology. 2019 Dec 15;161:107559. doi: 10.1016/j.neuropharm.2019.03.002. Epub 2019 Mar 6.
6
Functions of glutamate transporters in the brain.
Neurosci Res. 2000 May;37(1):15-9. doi: 10.1016/s0168-0102(00)00104-8.
7
The Regulation of Astrocytic Glutamate Transporters in Health and Neurodegenerative Diseases.
Int J Mol Sci. 2020 Dec 17;21(24):9607. doi: 10.3390/ijms21249607.
8
Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury.
Neurochem Int. 2006 Apr;48(5):394-403. doi: 10.1016/j.neuint.2005.12.001. Epub 2006 Feb 13.
9
Regulation of Glutamate Transporter Type 1 by TSA and the Antiepileptic Mechanism of TSA.
Neurochem Res. 2025 Jan 4;50(1):74. doi: 10.1007/s11064-024-04317-3.
10
Glutamate transporter expression and function in human glial progenitors.
Glia. 2004 Jan 15;45(2):133-43. doi: 10.1002/glia.10310.

引用本文的文献

1
Aspartate in the Brain: A Review.
Neurochem Res. 2025 Jun 12;50(3):199. doi: 10.1007/s11064-025-04454-3.
3
The Glutamate/GABA-Glutamine Cycle: Insights, Updates, and Advances.
J Neurochem. 2025 Mar;169(3):e70029. doi: 10.1111/jnc.70029.
5
Neuroprotective Effect of β-Lapachone against Glutamate-Induced Injury in HT22 Cells.
Biomol Ther (Seoul). 2025 Mar 1;33(2):286-296. doi: 10.4062/biomolther.2024.241. Epub 2025 Feb 12.
8
Sexual dimorphism, altered hippocampal glutamatergic neurotransmission, and cognitive impairment in APP knock-in mice.
J Alzheimers Dis. 2024 Nov;102(2):491-505. doi: 10.3233/JAD-240795. Epub 2024 Nov 14.
9
Enhancement of Glutamate Uptake as Novel Antiseizure Approach: Preclinical Proof of Concept.
Ann Neurol. 2025 Feb;97(2):344-357. doi: 10.1002/ana.27124. Epub 2024 Nov 8.

本文引用的文献

2
The upregulation of glial glutamate transporter-1 participates in the induction of brain ischemic tolerance in rats.
J Cereb Blood Flow Metab. 2007 Jul;27(7):1352-68. doi: 10.1038/sj.jcbfm.9600441. Epub 2007 Jan 17.
3
Ischemic preconditioning reveals that GLT1/EAAT2 glutamate transporter is a novel PPARgamma target gene involved in neuroprotection.
J Cereb Blood Flow Metab. 2007 Jul;27(7):1327-38. doi: 10.1038/sj.jcbfm.9600438. Epub 2007 Jan 10.
4
Added therapeutic value of memantine in the treatment of moderate to severe Alzheimer's disease.
Clin Drug Investig. 2006;26(6):303-14. doi: 10.2165/00044011-200626060-00001.
5
Pharmacological Induction of Ischemic Tolerance by Glutamate Transporter-1 (EAAT2) Upregulation.
Stroke. 2007 Jan;38(1):177-82. doi: 10.1161/01.STR.0000252091.36912.65. Epub 2006 Nov 22.
6
Late appearance of glutamate transporter defects in a murine model of ALS-parkinsonism dementia complex.
Neurochem Int. 2007 Jun;50(7-8):1067-77. doi: 10.1016/j.neuint.2006.09.017. Epub 2006 Nov 13.
7
Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement.
Br J Pharmacol. 2007 Jan;150(1):5-17. doi: 10.1038/sj.bjp.0706949. Epub 2006 Nov 6.
8
Huntington's disease: from huntingtin function and dysfunction to therapeutic strategies.
Cell Mol Life Sci. 2006 Nov;63(22):2642-60. doi: 10.1007/s00018-006-6242-0.
9
Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling.
Nat Neurosci. 2006 Nov;9(11):1388-96. doi: 10.1038/nn1793. Epub 2006 Oct 15.
10
Ischemic preconditioning in the brain.
Curr Opin Anaesthesiol. 2003 Oct;16(5):447-52. doi: 10.1097/00001503-200310000-00002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验