Yang Qian, Nagano Tomokazu, Shah Yatrik, Cheung Connie, Ito Shinji, Gonzalez Frank J
Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
Toxicol Sci. 2008 Jan;101(1):132-9. doi: 10.1093/toxsci/kfm206. Epub 2007 Aug 9.
To determine the impact of the species difference between rodents and humans in response to peroxisome proliferators (PPs) mediated by peroxisome proliferator-activated receptor (PPAR)alpha, PPAR alpha-humanized transgenic mice were generated using a P1 phage artificial chromosome (PAC) genomic clone bred onto a ppar alpha-null mouse background, designated hPPAR alpha PAC. In hPPAR alpha PAC mice, the human PPAR alpha gene is expressed in tissues with high fatty acid catabolism and induced upon fasting, similar to mouse PPAR alpha in wild-type (Wt) mice. Upon treatment with the PP fenofibrate, hPPAR alpha PAC mice exhibited responses similar to Wt mice, including peroxisome proliferation, lowering of serum triglycerides, and induction of PPAR alpha target genes encoding enzymes involved in fatty acid metabolism in liver, kidney, and heart, suggesting that human PPAR alpha (hPPAR alpha) functions in the same manner as mouse PPAR alpha in regulating fatty acid metabolism and lowering serum triglycerides. However, in contrast to Wt mice, treatment of hPPAR alpha PAC mice with fenofibrate did not cause significant hepatomegaly and hepatocyte proliferation, thus indicating that the mechanisms by which PPAR alpha affects lipid metabolism are distinct from the hepatocyte proliferation response, the latter of which is only induced by mouse PPAR alpha. In addition, a differential regulation of several genes, including the oncogenic let-7C miRNA by PPs, was observed between Wt and hPPAR alpha PAC mice that may contribute to the inherent difference between mouse and human PPAR alpha in activation of hepatocellular proliferation. The hPPAR alpha PAC mouse model provides an in vivo platform to investigate the species difference mediated by PPAR alpha and an ideal model for human risk assessment PPs exposure.
为了确定啮齿动物和人类之间物种差异对过氧化物酶体增殖物激活受体(PPAR)α介导的过氧化物酶体增殖剂(PPs)反应的影响,利用在pparα基因敲除小鼠背景上培育的P1噬菌体人工染色体(PAC)基因组克隆构建了PPARα人源化转基因小鼠,命名为hPPARα PAC。在hPPARα PAC小鼠中,人PPARα基因在脂肪酸分解代谢活跃的组织中表达,并在禁食时被诱导,这与野生型(Wt)小鼠中的小鼠PPARα相似。在用PP非诺贝特处理后,hPPARα PAC小鼠表现出与Wt小鼠相似的反应,包括过氧化物酶体增殖、血清甘油三酯降低以及肝脏、肾脏和心脏中参与脂肪酸代谢的PPARα靶基因编码酶的诱导,这表明人PPARα(hPPARα)在调节脂肪酸代谢和降低血清甘油三酯方面的功能与小鼠PPARα相同。然而,与Wt小鼠不同的是,用非诺贝特处理hPPARα PAC小鼠不会导致明显的肝脏肿大和肝细胞增殖,因此表明PPARα影响脂质代谢的机制与肝细胞增殖反应不同,后者仅由小鼠PPARα诱导。此外,在Wt和hPPARα PAC小鼠之间观察到几种基因的差异调节,包括PPs对致癌性let-7C微小RNA的调节,这可能导致小鼠和人PPARα在激活肝细胞增殖方面的固有差异。hPPARα PAC小鼠模型为研究PPARα介导的物种差异提供了一个体内平台,也是评估人类PPs暴露风险的理想模型。