Suppr超能文献

在同基因系中,线粒体基因组变异与2型糖尿病风险因素的直接关联。

Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains.

作者信息

Pravenec Michal, Hyakukoku Masaya, Houstek Josef, Zidek Vaclav, Landa Vladimir, Mlejnek Petr, Miksik Ivan, Dudová-Mothejzikova Kristyna, Pecina Petr, Vrbacky Marek, Drahota Zdenek, Vojtiskova Alena, Mracek Tomas, Kazdova Ludmila, Oliyarnyk Olena, Wang Jiaming, Ho Christopher, Qi Nathan, Sugimoto Ken, Kurtz Theodore

机构信息

Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.

出版信息

Genome Res. 2007 Sep;17(9):1319-26. doi: 10.1101/gr.6548207. Epub 2007 Aug 10.

Abstract

Recently, the relationship of mitochondrial DNA (mtDNA) variants to metabolic risk factors for diabetes and other common diseases has begun to attract increasing attention. However, progress in this area has been limited because (1) the phenotypic effects of variation in the mitochondrial genome are difficult to isolate owing to confounding variation in the nuclear genome, imprinting phenomena, and environmental factors; and (2) few animal models have been available for directly investigating the effects of mtDNA variants on complex metabolic phenotypes in vivo. Substitution of different mitochondrial genomes on the same nuclear genetic background in conplastic strains provides a way to unambiguously isolate effects of the mitochondrial genome on complex traits. Here we show that conplastic strains of rats with identical nuclear genomes but divergent mitochondrial genomes that encode amino acid differences in proteins of oxidative phosphorylation exhibit differences in major metabolic risk factors for type 2 diabetes. These results (1) provide the first direct evidence linking naturally occurring variation in the mitochondrial genome, independent of variation in the nuclear genome and other confounding factors, to inherited variation in known risk factors for type 2 diabetes; and (2) establish that spontaneous variation in the mitochondrial genome per se can promote systemic metabolic disturbances relevant to the pathogenesis of common diseases.

摘要

最近,线粒体DNA(mtDNA)变异与糖尿病及其他常见疾病的代谢风险因素之间的关系已开始引起越来越多的关注。然而,该领域的进展有限,原因如下:(1)由于核基因组中的混杂变异、印记现象和环境因素,线粒体基因组变异的表型效应难以分离;(2)几乎没有动物模型可用于直接研究mtDNA变异对体内复杂代谢表型的影响。同核异质系中相同核遗传背景上不同线粒体基因组的替换提供了一种明确分离线粒体基因组对复杂性状影响的方法。在此,我们表明,具有相同核基因组但线粒体基因组不同(编码氧化磷酸化蛋白中的氨基酸差异)的大鼠同核异质系在2型糖尿病的主要代谢风险因素方面存在差异。这些结果:(1)提供了首个直接证据,将独立于核基因组变异和其他混杂因素的线粒体基因组自然变异与2型糖尿病已知风险因素的遗传变异联系起来;(2)证实线粒体基因组本身的自发变异可促进与常见疾病发病机制相关的全身代谢紊乱。

相似文献

1
Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains.
Genome Res. 2007 Sep;17(9):1319-26. doi: 10.1101/gr.6548207. Epub 2007 Aug 10.
5
Generation of rat "supersonic" congenic/conplastic strains using superovulation and embryo transfer.
Methods Mol Biol. 2010;597:267-75. doi: 10.1007/978-1-60327-389-3_18.
6
Construction of two novel reciprocal conplastic rat strains and characterization of cardiac mitochondria.
Am J Physiol Heart Circ Physiol. 2013 Jan 1;304(1):H22-32. doi: 10.1152/ajpheart.00534.2012. Epub 2012 Nov 2.
9
Mitochondrial DNA variant for complex I reveals a role in diabetic cardiac remodeling.
J Biol Chem. 2012 Jun 22;287(26):22174-82. doi: 10.1074/jbc.M111.327866. Epub 2012 Apr 27.

引用本文的文献

1
Multi-tissue metabolomics reveal mtDNA- and diet-specific metabolite profiles in a mouse model of cardiometabolic disease.
Redox Biol. 2025 Apr;81:103541. doi: 10.1016/j.redox.2025.103541. Epub 2025 Feb 14.
2
Haplotype variability in mitochondrial rRNA predisposes to metabolic syndrome.
Commun Biol. 2024 Sep 11;7(1):1116. doi: 10.1038/s42003-024-06819-w.
3
Disruption of mitochondria-associated ER membranes impairs insulin sensitivity and thermogenic function of adipocytes.
Front Cell Dev Biol. 2022 Sep 9;10:965523. doi: 10.3389/fcell.2022.965523. eCollection 2022.
5
Insulin resistance in diabetes: The promise of using induced pluripotent stem cell technology.
World J Stem Cells. 2021 Mar 26;13(3):221-235. doi: 10.4252/wjsc.v13.i3.221.
7
An evolutionary, or "Mitocentric" perspective on cellular function and disease.
Redox Biol. 2020 Sep;36:101568. doi: 10.1016/j.redox.2020.101568. Epub 2020 May 26.
8
Cardioprotective Regimen of Adaptation to Chronic Hypoxia Diversely Alters Myocardial Gene Expression in SHR and SHR-mt Conplastic Rat Strains.
Front Endocrinol (Lausanne). 2019 Jan 22;9:809. doi: 10.3389/fendo.2018.00809. eCollection 2018.
10
Metabolic Syndrome and Associated Diseases: From the Bench to the Clinic.
Toxicol Sci. 2018 Mar 1;162(1):36-42. doi: 10.1093/toxsci/kfx233.

本文引用的文献

1
Impaired fasting glucose and impaired glucose tolerance: implications for care.
Diabetes Care. 2007 Mar;30(3):753-9. doi: 10.2337/dc07-9920.
2
Mitochondrial haplogroup N9a confers resistance against type 2 diabetes in Asians.
Am J Hum Genet. 2007 Mar;80(3):407-15. doi: 10.1086/512202. Epub 2007 Jan 22.
4
Comprehensive association testing of common mitochondrial DNA variation in metabolic disease.
Am J Hum Genet. 2006 Jul;79(1):54-61. doi: 10.1086/504926. Epub 2006 May 24.
5
Systematic identification of human mitochondrial disease genes through integrative genomics.
Nat Genet. 2006 May;38(5):576-82. doi: 10.1038/ng1776. Epub 2006 Apr 2.
6
7
Molecular mechanisms of mitochondrial diabetes (MIDD).
Ann Med. 2005;37(3):213-21. doi: 10.1080/07853890510007188.
8
Mitochondrial dysfunction and type 2 diabetes.
Science. 2005 Jan 21;307(5708):384-7. doi: 10.1126/science.1104343.
9
A cluster of metabolic defects caused by mutation in a mitochondrial tRNA.
Science. 2004 Nov 12;306(5699):1190-4. doi: 10.1126/science.1102521. Epub 2004 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验