Suppr超能文献

牛磺酸转运体基因敲除小鼠的表型

Phenotype of the taurine transporter knockout mouse.

作者信息

Warskulat Ulrich, Heller-Stilb Birgit, Oermann Evelyn, Zilles Karl, Haas Helmut, Lang Florian, Häussinger Dieter

机构信息

Clinic for Gastroenterology, Hepatology and Infectiology, University of Düsseldorf, Germany.

出版信息

Methods Enzymol. 2007;428:439-58. doi: 10.1016/S0076-6879(07)28025-5.

Abstract

This chapter reports present knowledge on the properties of mice with disrupted gene coding for the taurine transporter (taut-/- mice). Study of those mice unraveled some of the roles of taurine and its membrane transport for the development and maintenance of normal organ functions and morphology. When compared with wild-type controls, taut-/- mice have decreased taurine levels in skeletal and heart muscle by about 98%, in brain, kidney, plasma, and retina by 80 to 90%, and in liver by about 70%. taut-/- mice exhibit a lower body mass as well as a strongly reduced exercise capacity compared with taut+/- and wild-type mice. Furthermore, taut-/- mice show a variety of pathological features, for example, subtle derangement of renal osmoregulation, changes in neuroreceptor expression, and loss of long-term potentiation in the striatum, and they develop clinically relevant age-dependent disorders, for example, visual, auditory, and olfactory dysfunctions, unspecific hepatitis, and liver fibrosis. Taurine-deficient animal models such as acutely dietary-manipulated foxes and cats, pharmacologically induced taurine-deficient rats, and taurine transporter knockout mouse are powerful tools allowing identification of the mechanisms and complexities of diseases mediated by impaired taurine transport and taurine depletion (Chapman et al., 1993; Heller-Stilb et al., 2002; Huxtable, 1992; Lake, 1993; Moise et al., 1991; Novotny et al., 1991; Pion et al., 1987; Timbrell et al., 1995; Warskulat et al., 2004, 2006b). Taurine, which is the most abundant amino acid in many tissues, is normally found in intracellular concentrations of 10 to 70 mmol/kg in mammalian heart, brain, skeletal muscle, liver, and retina (Chapman et al., 1993; Green et al., 1991; Huxable, 1992; Timbrell et al., 1995). These high taurine levels are maintained by an ubiquitous expression of Na(+)-dependent taurine transporter (TAUT) in the plasma membrane (Burg, 1995; Kwon and Handler, 1995; Lang et al., 1998; Liu et al., 1992; Ramamoorthy et al., 1994; Schloss et al., 1994; Smith et al., 1992; Uchida et al., 1992; Vinnakota et al., 1997; Yancey et al., 1975). Taurine is not incorporated into proteins. It is involved in cell volume regulation, neuromodulation, antioxidant defense, protein stabilization, stress responses, and via formation of taurine-chloramine in immunomodulation (Chapman et al., 1993; Green et al., 1991; Huxtable, 1992; Timbrell et al., 1995). On the basis of its functions, taurine may protect cells against various types of injury (Chapman et al., 1993; Green et al., 1991; Huxtable, 1992; Kurz et al., 1998; Park et al., 1995; Stapleton et al., 1998; Timbrell et al., 1995; Welch and Brown, 1996; Wettstein and Häussinger, 1997). In order to examine the multiple taurine functions, murine models have several intrinsic advantages for in vivo research compared to other animal models, including lower cost, maintenance, and rapid reproduction rate. Further, experimental reagents for cellular and molecular studies are widely available for the mouse. In particular, mice can be easily genetically manipulated by making transgene and knockout mice. This chapter focuses on the phenotype of the TAUT-deficient murine model (taut-/-; Heller-Stilb et al., 2002), which may help researchers elucidate the diverse roles of taurine in development and maintenance of normal organ functions and morphology.

摘要

本章报告了有关编码牛磺酸转运体的基因被破坏的小鼠(taut-/-小鼠)特性的现有知识。对这些小鼠的研究揭示了牛磺酸及其膜转运在正常器官功能和形态的发育与维持中的一些作用。与野生型对照相比,taut-/-小鼠骨骼肌和心肌中的牛磺酸水平降低了约98%,脑、肾、血浆和视网膜中的牛磺酸水平降低了80%至90%,肝脏中的牛磺酸水平降低了约70%。与taut+/-和野生型小鼠相比,taut-/-小鼠体重较低,运动能力也大幅下降。此外,taut-/-小鼠表现出多种病理特征,例如,肾脏渗透调节的细微紊乱、神经受体表达的变化以及纹状体中长时程增强的丧失,并且它们会出现临床上相关的年龄依赖性疾病,例如视觉、听觉和嗅觉功能障碍、非特异性肝炎和肝纤维化。缺乏牛磺酸的动物模型,如急性饮食控制的狐狸和猫、药理学诱导的牛磺酸缺乏大鼠以及牛磺酸转运体基因敲除小鼠,是强大的工具,有助于确定由牛磺酸转运受损和牛磺酸耗竭介导的疾病的机制和复杂性(查普曼等人,1993年;赫勒 - 斯蒂尔布等人,2002年;赫克斯泰布尔,1992年;莱克,1993年;莫伊斯等人,1991年;诺沃特尼等人,1991年;皮翁等人,1987年;廷布雷尔等人,1995年;瓦尔斯库拉特等人,2004年;2006年b)。牛磺酸是许多组织中最丰富的氨基酸,在哺乳动物的心脏、脑、骨骼肌、肝脏和视网膜中,其细胞内浓度通常为10至70 mmol/kg(查普曼等人,1993年;格林等人,1991年;赫克斯布尔,1992年;廷布雷尔等人,1995年)。这些高牛磺酸水平通过质膜中普遍存在的钠依赖性牛磺酸转运体(TAUT)的表达来维持(伯格,1995年;权和汉德勒,1995年;朗等人,1998年;刘等人,1992年;拉马穆尔蒂等人,1994年;施洛斯等人,1994年;史密斯等人,1992年;内田等人,1992年;文纳科塔等人,1997年;扬西等人,1975年)。牛磺酸不掺入蛋白质。它参与细胞体积调节、神经调节、抗氧化防御、蛋白质稳定、应激反应,并通过在免疫调节中形成牛磺氯胺发挥作用(查普曼等人,1993年;格林等人,1991年;赫克斯泰布尔,1992年;廷布雷尔等人,1995年)。基于其功能,牛磺酸可以保护细胞免受各种类型的损伤(查普曼等人,1993年;格林等人,1991年;赫克斯泰布尔,1992年;库尔兹等人,1998年;帕克等人,1995年;斯台普尔顿等人,1998年;廷布雷尔等人,1995年;韦尔奇和布朗,1996年;韦特施泰因和豪辛格,1997年)。为了研究牛磺酸的多种功能,与其他动物模型相比,小鼠模型在体内研究中有几个内在优势,包括成本较低、易于饲养和繁殖速度快。此外,用于细胞和分子研究的实验试剂在小鼠中广泛可得。特别是,通过制作转基因和基因敲除小鼠,可以很容易地对小鼠进行基因操作。本章重点关注TAUT缺陷小鼠模型(taut-/-;赫勒 - 斯蒂尔布等人,2002年)的表型,这可能有助于研究人员阐明牛磺酸在正常器官功能和形态的发育与维持中的多种作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验