Suppr超能文献

优化蛋白质生产的放大产量:计算优化DNA组装(CODA)和翻译工程。

Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering.

作者信息

Hatfield G Wesley, Roth David A

机构信息

The Institute for Genomics and Bioinformatics, Donald Bren School of Information and Computer Sciences, University of California, Irvine, CA 92497, USA.

出版信息

Biotechnol Annu Rev. 2007;13:27-42. doi: 10.1016/S1387-2656(07)13002-7.

Abstract

Translation Engineering combined with synthetic biology (gene synthesis) techniques makes it possible to deliberately alter the presumed translation kinetics of genes without altering the amino acid sequence. Here, we describe proprietary technologies that design and assemble synthetic genes for high expression and enhanced protein production, and offers new insights and methodologies for affecting protein structure and function. We have patented Translation Engineering technologies to manage the complexity of gene design to account for codon pair usage, translational pausing signals, RNA secondary structure and user-defined sequences such as restriction sites. Failure to optimize for codon pair-encoded translation pauses often results in the relatively common occurrence of a slowly translated codon pair that slows the rate of protein elongation and decreases total protein production. Translation Engineering technology improves heterologous expression by tuning the gene sequence for translation in any well-characterized host, including cell-free expression techniques characterized by "broken"Escherichia coli systems used in kits for today's molecular tools market. In addition, we have patented a novel gene assembly method (Computationally Optimized DNA Assembly; CODA) that uses the degeneracy of the genetic code to design oligonucleotides with thermodynamic properties for self-assembly into a single, linear DNA product. Fast translational kinetics and robust protein expression are optimized in synthetic "Hot Rod" genes that are guaranteed to express in E. coli at high levels. These genes are optimized for codon usage and other properties known to aid protein expression, and importantly, they are engineered to be devoid of mRNA secondary structures that might impede transcription, and over-represented codon pairs that might impede translation. Hot Rod genes allow translating ribosomes and E. coli RNA polymerases to maintain coupled translation and transcription at maximal rates. As a result, the nascent mRNA is produced at a high level and is sequestered in polysomes where it is protected from degradation, even further enhancing protein production. In this review we demonstrate that codon context can profoundly influence translation kinetics, and that over-represented codon pairs are often present at protein domain boundaries and appear to control independent protein folding in several popular expression systems. Finally, we consider that over-represented codon pairs (pause sites) may be essential to solving problems of protein expression, solubility, folding and activity encountered when genes are introduced into heterologous expression systems, where the specific set of codon pairs controlling ribosome pausing are different. Thus, Translation Engineering combined with synthetic biology (gene synthesis) techniques may allow us to manipulate the translation kinetics of genes to restore or enhance function in a variety of traditional and novel expression systems.

摘要

翻译工程与合成生物学(基因合成)技术相结合,使得在不改变氨基酸序列的情况下,有目的地改变基因假定的翻译动力学成为可能。在此,我们描述了用于设计和组装合成基因以实现高表达和增强蛋白质生产的专有技术,并提供了影响蛋白质结构和功能的新见解和方法。我们已为翻译工程技术申请专利,以管理基因设计的复杂性,从而考虑密码子对使用情况、翻译暂停信号、RNA二级结构以及用户定义的序列(如限制性酶切位点)。未能针对密码子对编码的翻译暂停进行优化,常常会导致相对常见的情况,即出现一个翻译缓慢的密码子对,减缓蛋白质延伸速率并降低总蛋白质产量。翻译工程技术通过调整基因序列以在任何特征明确的宿主中进行翻译来改善异源表达,包括以用于当今分子工具市场试剂盒中的“破碎”大肠杆菌系统为特征的无细胞表达技术。此外,我们已为一种新型基因组装方法(计算优化DNA组装;CODA)申请专利,该方法利用遗传密码的简并性来设计具有热力学性质的寡核苷酸,以便自组装成单一的线性DNA产物。在合成的“热棒”基因中优化了快速翻译动力学和强大的蛋白质表达,这些基因保证能在大肠杆菌中高水平表达。这些基因针对密码子使用情况和其他已知有助于蛋白质表达的特性进行了优化,重要的是,它们经过改造,没有可能阻碍转录的mRNA二级结构,也没有可能阻碍翻译的过度出现的密码子对。热棒基因使翻译核糖体和大肠杆菌RNA聚合酶能够以最大速率维持偶联的翻译和转录。结果,新生mRNA大量产生并被隔离在多核糖体中,在那里它受到保护不被降解,甚至进一步增强了蛋白质生产。在本综述中,我们证明密码子上下文可深刻影响翻译动力学,并且过度出现的密码子对常常出现在蛋白质结构域边界处,并且似乎在几种流行的表达系统中控制独立的蛋白质折叠。最后,我们认为过度出现的密码子对(暂停位点)对于解决将基因引入异源表达系统时遇到的蛋白质表达、溶解性、折叠和活性问题可能至关重要,在异源表达系统中控制核糖体暂停的特定密码子对集合是不同的。因此,翻译工程与合成生物学(基因合成)技术相结合,可能使我们能够操纵基因的翻译动力学,以在各种传统和新型表达系统中恢复或增强功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验