Suppr超能文献

强直性肌营养不良1型中CUGBP1稳态水平升高是由蛋白激酶C介导的过度磷酸化所致。

Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation.

作者信息

Kuyumcu-Martinez N Muge, Wang Guey-Shin, Cooper Thomas A

机构信息

Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA.

出版信息

Mol Cell. 2007 Oct 12;28(1):68-78. doi: 10.1016/j.molcel.2007.07.027.

Abstract

The genetic basis of myotonic dystrophy type 1 (DM1) is a CTG expansion in the 3' untranslated region (UTR) of DMPK. The pathogenic mechanism involves an RNA gain of function in which the repeat-containing transcripts accumulate in nuclei and alter the functions of RNA-binding proteins such as CUG-binding protein 1 (CUGBP1). CUGBP1 levels are increased in DM1 myoblasts, heart, and skeletal muscle tissues and in some DM1 mouse models. However, the molecular mechanisms for increased CUGBP1 in DM1 are unclear. Here, we demonstrate that expression of DMPK-CUG-repeat RNA results in hyperphosphorylation and stabilization of CUGBP1. CUGBP1 is hyperphosphorylated in DM1 tissues, cells, and a DM1 mouse model. Activation of PKC is required for CUGBP1 hyperphosphorylation in DM1 cells, and PKCalpha and betaII directly phosphorylate CUGBP1 in vitro. These results indicate that inappropriate activation of the PKC pathway contributes to the pathogenic effects of a noncoding RNA.

摘要

1型强直性肌营养不良(DM1)的遗传基础是DMPK基因3'非翻译区(UTR)中的CTG重复序列扩增。其致病机制涉及RNA功能获得,其中含有重复序列的转录本在细胞核中积累,并改变RNA结合蛋白的功能,如CUG结合蛋白1(CUGBP1)。在DM1成肌细胞、心脏和骨骼肌组织以及一些DM1小鼠模型中,CUGBP1水平升高。然而,DM1中CUGBP1水平升高的分子机制尚不清楚。在这里,我们证明DMPK - CUG重复RNA的表达导致CUGBP1的过度磷酸化和稳定。在DM1组织、细胞和DM1小鼠模型中,CUGBP1发生过度磷酸化。PKC的激活是DM1细胞中CUGBP1过度磷酸化所必需的,并且PKCalpha和betaII在体外直接使CUGBP1磷酸化。这些结果表明PKC途径的不适当激活促成了非编码RNA的致病作用。

相似文献

3
PKC inhibition ameliorates the cardiac phenotype in a mouse model of myotonic dystrophy type 1.
J Clin Invest. 2009 Dec;119(12):3797-806. doi: 10.1172/JCI37976. Epub 2009 Nov 9.
4
CUGBP1 overexpression in mouse skeletal muscle reproduces features of myotonic dystrophy type 1.
Hum Mol Genet. 2010 Sep 15;19(18):3614-22. doi: 10.1093/hmg/ddq277. Epub 2010 Jul 5.
5
Expanded CTG repeats within the DMPK 3' UTR causes severe skeletal muscle wasting in an inducible mouse model for myotonic dystrophy.
Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2646-51. doi: 10.1073/pnas.0708519105. Epub 2008 Feb 13.
7
Heart-specific overexpression of CUGBP1 reproduces functional and molecular abnormalities of myotonic dystrophy type 1.
Hum Mol Genet. 2010 Mar 15;19(6):1066-75. doi: 10.1093/hmg/ddp570. Epub 2010 Jan 5.
9
10
Small molecule kinase inhibitors alleviate different molecular features of myotonic dystrophy type 1.
RNA Biol. 2014;11(6):742-54. doi: 10.4161/rna.28799. Epub 2014 Apr 24.

引用本文的文献

1
Molecular genetics of myotonic dystrophy and the evolution of therapeutic approaches.
J Hum Genet. 2025 Jul 3. doi: 10.1038/s10038-025-01358-6.
2
Multisystem Symptoms in Myotonic Dystrophy Type 1: A Management and Therapeutic Perspective.
Int J Mol Sci. 2025 Jun 2;26(11):5350. doi: 10.3390/ijms26115350.
3
Comparative Analysis of Splicing Alterations in Three Muscular Dystrophies.
Biomedicines. 2025 Mar 1;13(3):606. doi: 10.3390/biomedicines13030606.
4
The TCF4 Gene Regulates Apoptosis of Corneal Endothelial Cells in Fuchs Endothelial Corneal Dystrophy.
Invest Ophthalmol Vis Sci. 2025 Mar 3;66(3):16. doi: 10.1167/iovs.66.3.16.
6
Functions of the Muscleblind-like protein family and their role in disease.
Cell Commun Signal. 2025 Feb 18;23(1):97. doi: 10.1186/s12964-025-02102-5.
7
MBNL overexpression rescues cardiac phenotypes in a myotonic dystrophy type 1 heart mouse model.
J Clin Invest. 2025 Feb 11;135(7):e186416. doi: 10.1172/JCI186416.
8
Global dysregulation of circular RNAs in frontal cortex and whole blood from DM1 and DM2.
Hum Genet. 2025 Apr;144(4):417-432. doi: 10.1007/s00439-025-02729-x. Epub 2025 Feb 4.
10
Challenges in Therapeutically Targeting the RNA-Recognition Motif.
Wiley Interdiscip Rev RNA. 2024 Nov-Dec;15(6):e1877. doi: 10.1002/wrna.1877.

本文引用的文献

2
Chloride channelopathy in myotonic dystrophy resulting from loss of posttranscriptional regulation for CLCN1.
Am J Physiol Cell Physiol. 2007 Apr;292(4):C1291-7. doi: 10.1152/ajpcell.00336.2006. Epub 2006 Nov 29.
3
Misregulation of alternative splicing causes pathogenesis in myotonic dystrophy.
Prog Mol Subcell Biol. 2006;44:133-59. doi: 10.1007/978-3-540-34449-0_7.
5
Reversible model of RNA toxicity and cardiac conduction defects in myotonic dystrophy.
Nat Genet. 2006 Sep;38(9):1066-70. doi: 10.1038/ng1857. Epub 2006 Jul 30.
6
RNA-mediated neuromuscular disorders.
Annu Rev Neurosci. 2006;29:259-77. doi: 10.1146/annurev.neuro.29.051605.113014.
7
Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy.
Hum Mol Genet. 2006 Jul 1;15(13):2087-97. doi: 10.1093/hmg/ddl132. Epub 2006 May 22.
8
Nuclear protein kinase C.
Biochim Biophys Acta. 2006 May-Jun;1761(5-6):542-51. doi: 10.1016/j.bbalip.2006.02.009. Epub 2006 Mar 15.
9
Nuclear RNA foci in the heart in myotonic dystrophy.
Circ Res. 2005 Nov 25;97(11):1152-5. doi: 10.1161/01.RES.0000193598.89753.e3. Epub 2005 Oct 27.
10
Neuronal ELAV proteins enhance mRNA stability by a PKCalpha-dependent pathway.
Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12065-70. doi: 10.1073/pnas.0504702102. Epub 2005 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验