Suppr超能文献

纤维蛋白纤维与其他蛋白质纤维的机械性能和结构特性比较。

A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers.

作者信息

Guthold M, Liu W, Sparks E A, Jawerth L M, Peng L, Falvo M, Superfine R, Hantgan R R, Lord S T

机构信息

Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA.

出版信息

Cell Biochem Biophys. 2007;49(3):165-81. doi: 10.1007/s12013-007-9001-4. Epub 2007 Oct 2.

Abstract

In the past few years a great deal of progress has been made in studying the mechanical and structural properties of biological protein fibers. Here, we compare and review the stiffness (Young's modulus, E) and breaking strain (also called rupture strain or extensibility, epsilon(max)) of numerous biological protein fibers in light of the recently reported mechanical properties of fibrin fibers. Emphasis is also placed on the structural features and molecular mechanisms that endow biological protein fibers with their respective mechanical properties. Generally, stiff biological protein fibers have a Young's modulus on the order of a few Gigapascal and are not very extensible (epsilon(max) < 20%). They also display a very regular arrangement of their monomeric units. Soft biological protein fibers have a Young's modulus on the order of a few Megapascal and are very extensible (epsilon(max) > 100%). These soft, extensible fibers employ a variety of molecular mechanisms, such as extending amorphous regions or unfolding protein domains, to accommodate large strains. We conclude our review by proposing a novel model of how fibrin fibers might achieve their extremely large extensibility, despite the regular arrangement of the monomeric fibrin units within a fiber. We propose that fibrin fibers accommodate large strains by two major mechanisms: (1) an alpha-helix to beta-strand conversion of the coiled coils; (2) a partial unfolding of the globular C-terminal domain of the gamma-chain.

摘要

在过去几年中,在研究生物蛋白质纤维的力学和结构特性方面取得了很大进展。在此,我们根据最近报道的纤维蛋白纤维的力学性能,比较并综述了多种生物蛋白质纤维的刚度(杨氏模量,E)和断裂应变(也称为破裂应变或延伸率,εmax)。同时还重点介绍了赋予生物蛋白质纤维各自力学性能的结构特征和分子机制。一般来说,刚性生物蛋白质纤维的杨氏模量约为几吉帕斯卡,且延伸性不强(εmax < 20%)。它们的单体单元排列也非常规则。柔软的生物蛋白质纤维的杨氏模量约为几兆帕斯卡,且具有很强的延伸性(εmax > 100%)。这些柔软、可延伸的纤维采用多种分子机制,如伸展无定形区域或展开蛋白质结构域,以适应大应变。我们通过提出一个新模型来结束我们的综述,该模型解释了尽管纤维蛋白纤维内的单体纤维蛋白单元排列规则,但它们如何实现极大的延伸性。我们认为纤维蛋白纤维通过两种主要机制来适应大应变:(1)卷曲螺旋的α-螺旋向β-链转化;(2)γ链球状C末端结构域的部分展开。

相似文献

1
A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers.
Cell Biochem Biophys. 2007;49(3):165-81. doi: 10.1007/s12013-007-9001-4. Epub 2007 Oct 2.
2
Strength, deformability and toughness of uncrosslinked fibrin fibers from theoretical reconstruction of stress-strain curves.
Acta Biomater. 2021 Dec;136:327-342. doi: 10.1016/j.actbio.2021.09.050. Epub 2021 Oct 2.
4
A modular fibrinogen model that captures the stress-strain behavior of fibrin fibers.
Biophys J. 2012 Oct 3;103(7):1537-44. doi: 10.1016/j.bpj.2012.08.038. Epub 2012 Oct 2.
5
Variability in individual native fibrin fiber mechanics.
Phys Biol. 2024 Oct 30;21(6). doi: 10.1088/1478-3975/ad899f.
6
α-α Cross-links increase fibrin fiber elasticity and stiffness.
Biophys J. 2012 Jan 4;102(1):168-75. doi: 10.1016/j.bpj.2011.11.4016. Epub 2012 Jan 3.
7
Revealing the molecular origins of fibrin's elastomeric properties by in situ X-ray scattering.
Acta Biomater. 2020 Mar 1;104:39-52. doi: 10.1016/j.actbio.2020.01.002. Epub 2020 Jan 7.
8
Fibrin Fiber Stiffness Is Strongly Affected by Fiber Diameter, but Not by Fibrinogen Glycation.
Biophys J. 2016 Mar 29;110(6):1400-10. doi: 10.1016/j.bpj.2016.02.021.
9
Fibrinogen αC-region acts as a functional safety latch: Implications for a fibrin biomechanical behaviour model.
Acta Biomater. 2024 Nov;189:179-191. doi: 10.1016/j.actbio.2024.10.005. Epub 2024 Oct 10.
10
Molecular basis of fibrin clot elasticity.
Structure. 2008 Mar;16(3):449-59. doi: 10.1016/j.str.2007.12.019. Epub 2008 Feb 21.

引用本文的文献

2
Construction and Bioengineering of Human Bioprosthetic Ovaries from Cryopreserved Ovarian Tissue.
Int J Mol Sci. 2025 Jun 10;26(12):5545. doi: 10.3390/ijms26125545.
3
Structural Mechanisms of Forced Unfolding of Double-Stranded Fibrin Oligomers.
J Phys Chem B. 2025 Apr 24;129(16):3963-3977. doi: 10.1021/acs.jpcb.5c00755. Epub 2025 Apr 14.
6
3D-Printed Polymeric Biomaterials for Health Applications.
Adv Healthc Mater. 2025 Jan;14(1):e2402571. doi: 10.1002/adhm.202402571. Epub 2024 Nov 5.
8
Rupture mechanics of blood clots: Influence of fibrin network structure on the rupture resistance.
Acta Biomater. 2024 Dec;190:329-343. doi: 10.1016/j.actbio.2024.10.004. Epub 2024 Oct 10.
9
Coupling of Spectrin Repeat Modules for the Assembly of Nanorods and Presentation of Protein Domains.
ACS Nano. 2024 Oct 22;18(42):28748-28763. doi: 10.1021/acsnano.4c07701. Epub 2024 Oct 11.
10
Structure, Properties and Degradation of Self-Assembled Fibrinogen Nanofiber Scaffolds.
ACS Appl Bio Mater. 2024 Sep 16;7(9):6186-6200. doi: 10.1021/acsabm.4c00761. Epub 2024 Sep 3.

本文引用的文献

2
Forced unfolding of coiled-coils in fibrinogen by single-molecule AFM.
Biophys J. 2007 Mar 1;92(5):L39-41. doi: 10.1529/biophysj.106.101261. Epub 2006 Dec 15.
4
Fibrin fibers have extraordinary extensibility and elasticity.
Science. 2006 Aug 4;313(5787):634. doi: 10.1126/science.1127317.
5
Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy.
J Mol Biol. 2006 Jul 14;360(3):623-30. doi: 10.1016/j.jmb.2006.05.030.
6
The Mechanism of Polymerization of Fibrinogen.
Proc Natl Acad Sci U S A. 1952 Jul;38(7):566-9. doi: 10.1073/pnas.38.7.566.
10
Natively unfolded regions of the vertebrate fibrinogen molecule.
Proteins. 2006 May 1;63(2):391-7. doi: 10.1002/prot.20758.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验