Suppr超能文献

端粒:放射敏感性的标志。

Telomeres: hallmarks of radiosensitivity.

作者信息

Ayouaz Ali, Raynaud Christophe, Heride Claire, Revaud Deborah, Sabatier Laure

机构信息

Commissariat à l'Energie Atomique, DSV-Radiobiology and Oncology Unit DSV/IRCM/SRO, BP6 92265 Fontenay-aux-Roses, France.

出版信息

Biochimie. 2008 Jan;90(1):60-72. doi: 10.1016/j.biochi.2007.09.011. Epub 2007 Sep 22.

Abstract

Telomeres are the very ends of the chromosomes. They can be seen as natural double-strand breaks (DSB), specialized structures which prevent DSB repair and activation of DNA damage checkpoints. In somatic cells, attrition of telomeres occurs after each cell division until replicative senescence. In the absence of telomerase, telomeres shorten due to incomplete replication of the lagging strand at the very end of chromosome termini. Moreover, oxidative stress and accumulating reactive oxygen species (ROS) lead to an increased telomere shortening due to a less efficient repair of SSB in telomeres. The specialized structures at telomeres include proteins involved in both telomere maintenance and DNA repair. However when a telomere is damaged and has to be repaired, those proteins might fail to perform an accurate repair of the damage. This is the starting point of this article in which we first summarize the well-established relationships between DNA repair processes and maintenance of functional telomeres. We then examine how damaged telomeres would be processed, and show that irradiation alters telomere maintenance leading to possibly dramatic consequences. Our point is to suggest that those consequences are not restricted to the short term effects such as increased radiation-induced cell death. On the contrary, we postulate that the major impact of the loss of telomere integrity might occur in the long term, during multistep carcinogenesis. Its major role would be to act as an amplificator event unmasking in one single step recessive radiation-induced mutations among thousands of genes and providing cellular proliferative advantage. Moreover, the chromosomal instability generated by damaged telomeres will favour each step of the transformation from normal to fully transformed cells.

摘要

端粒是染色体的最末端。它们可被视为天然双链断裂(DSB),是防止DSB修复和DNA损伤检查点激活的特殊结构。在体细胞中,每次细胞分裂后端粒都会发生磨损,直至复制性衰老。在缺乏端粒酶的情况下,由于染色体末端滞后链的不完全复制,端粒会缩短。此外,氧化应激和活性氧(ROS)的积累会导致端粒缩短加剧,因为端粒中单链断裂(SSB)的修复效率较低。端粒处的特殊结构包括参与端粒维持和DNA修复的蛋白质。然而,当端粒受损需要修复时,这些蛋白质可能无法准确修复损伤。这就是本文的出发点,我们首先总结DNA修复过程与功能性端粒维持之间已确立的关系。然后,我们研究受损端粒将如何被处理,并表明辐射会改变端粒维持,可能导致严重后果。我们的观点是,这些后果不仅限于短期影响,如辐射诱导的细胞死亡增加。相反,我们推测端粒完整性丧失的主要影响可能发生在长期的多步骤致癌过程中。其主要作用将是作为一个放大事件,一次性揭示数千个基因中隐性的辐射诱导突变,并提供细胞增殖优势。此外,受损端粒产生的染色体不稳定性将有利于从正常细胞到完全转化细胞的每一步转变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验