Shay Jerry W, Wright Woodring E
University of Texas Southwestern Medical Center at Dallas, Department of Cell Biology, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA.
Carcinogenesis. 2005 May;26(5):867-74. doi: 10.1093/carcin/bgh296. Epub 2004 Oct 7.
Telomere dynamics are a critical component of both aging and cancer. Telomeres progressively shorten in almost all dividing cells and most human cells do not express or maintain sufficient telomerase activity to fully maintain telomeres. There is accumulating evidence that when only a few telomeres are short, they form end-associations, leading to a DNA damage signal resulting in replicative senescence (a cellular growth arrest, also called the M1 stage). In the absence of cell-cycle checkpoint pathways (e.g. p53 and or p16/Rb), cells bypass M1 senescence and telomeres continue to shorten eventually resulting in crisis (also called the M2 stage). M2 is characterized by many 'uncapped' chromosome ends, end-fusions, chromosome breakage fusion-bridge cycles, mitotic catastrophe and a high fraction of apoptotic cells. In a rare M2 cell, telomerase (a cellular reverse transcriptase) can be reactivated or up-regulated, resulting in indefinite cell proliferation. This cellular immortalization is a potentially rate-limiting step in carcinogenesis that is important for the continuing evolution of most advanced cancers. In this perspective we will present our views on the evidence for telomere dysfunction in aging and in cancer progression. We will argue that telomere shortening in the absence of other alterations may be a potent tumor suppressor mechanism and we will discuss the evidence for and against the major molecular mechanisms proposed to initiate replicative senescence.
端粒动态变化是衰老和癌症的关键组成部分。在几乎所有分裂细胞中,端粒会逐渐缩短,并且大多数人类细胞不表达或维持足够的端粒酶活性来完全维持端粒。越来越多的证据表明,当只有少数端粒缩短时,它们会形成末端关联,导致DNA损伤信号,从而引发复制性衰老(一种细胞生长停滞,也称为M1期)。在缺乏细胞周期检查点途径(例如p53和/或p16/Rb)的情况下,细胞绕过M1期衰老,端粒继续缩短,最终导致危机(也称为M2期)。M2期的特征是许多“无帽”染色体末端、末端融合、染色体断裂融合桥循环、有丝分裂灾难以及高比例的凋亡细胞。在极少数M2期细胞中,端粒酶(一种细胞逆转录酶)可以被重新激活或上调,从而导致细胞无限增殖。这种细胞永生化是致癌过程中一个潜在的限速步骤,对大多数晚期癌症的持续发展很重要。在这篇综述中,我们将阐述我们对于衰老和癌症进展中端粒功能障碍证据的看法。我们将论证,在没有其他改变的情况下,端粒缩短可能是一种强大的肿瘤抑制机制,并且我们将讨论支持和反对启动复制性衰老的主要分子机制的证据。