Suppr超能文献

使用结构磁共振成像对个体受试者进行阿尔茨海默病诊断:验证研究

Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies.

作者信息

Vemuri Prashanthi, Gunter Jeffrey L, Senjem Matthew L, Whitwell Jennifer L, Kantarci Kejal, Knopman David S, Boeve Bradley F, Petersen Ronald C, Jack Clifford R

机构信息

Department of Radiology, Mayo Clinic 200 1st St SW, Rochester, MN 55905, USA.

出版信息

Neuroimage. 2008 Feb 1;39(3):1186-97. doi: 10.1016/j.neuroimage.2007.09.073. Epub 2007 Oct 22.

Abstract

OBJECTIVE

To develop and validate a tool for Alzheimer's disease (AD) diagnosis in individual subjects using support vector machine (SVM)-based classification of structural MR (sMR) images.

BACKGROUND

Libraries of sMR scans of clinically well characterized subjects can be harnessed for the purpose of diagnosing new incoming subjects.

METHODS

One hundred ninety patients with probable AD were age- and gender-matched with 190 cognitively normal (CN) subjects. Three different classification models were implemented: Model I uses tissue densities obtained from sMR scans to give STructural Abnormality iNDex (STAND)-score; and Models II and III use tissue densities as well as covariates (demographics and Apolipoprotein E genotype) to give adjusted-STAND (aSTAND)-score. Data from 140 AD and 140 CN were used for training. The SVM parameter optimization and training were done by four-fold cross validation (CV). The remaining independent sample of 50 AD and 50 CN was used to obtain a minimally biased estimate of the generalization error of the algorithm.

RESULTS

The CV accuracy of Model II and Model III aSTAND-scores was 88.5% and 89.3%, respectively, and the developed models generalized well on the independent test data sets. Anatomic patterns best differentiating the groups were consistent with the known distribution of neurofibrillary AD pathology.

CONCLUSIONS

This paper presents preliminary evidence that application of SVM-based classification of an individual sMR scan relative to a library of scans can provide useful information in individual subjects for diagnosis of AD. Including demographic and genetic information in the classification algorithm slightly improves diagnostic accuracy.

摘要

目的

利用基于支持向量机(SVM)的结构磁共振(sMR)图像分类,开发并验证一种用于个体受试者阿尔茨海默病(AD)诊断的工具。

背景

具有临床特征明确的受试者的sMR扫描库可用于诊断新纳入的受试者。

方法

190例可能患有AD的患者与190例认知正常(CN)的受试者进行年龄和性别匹配。实施了三种不同的分类模型:模型I使用从sMR扫描中获得的组织密度给出结构异常指数(STAND)评分;模型II和模型III使用组织密度以及协变量(人口统计学和载脂蛋白E基因型)给出调整后的STAND(aSTAND)评分。来自140例AD和140例CN的数据用于训练。通过四重交叉验证(CV)进行SVM参数优化和训练。其余50例AD和50例CN的独立样本用于获得算法泛化误差的最小偏差估计。

结果

模型II和模型III的aSTAND评分的CV准确率分别为88.5%和89.3%,并且所开发的模型在独立测试数据集上具有良好的泛化能力。最能区分两组的解剖模式与已知的神经纤维AD病理学分布一致。

结论

本文提供了初步证据,即相对于扫描库对个体sMR扫描应用基于SVM的分类可为个体受试者的AD诊断提供有用信息。在分类算法中纳入人口统计学和遗传信息可略微提高诊断准确性。

相似文献

1
Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies.
Neuroimage. 2008 Feb 1;39(3):1186-97. doi: 10.1016/j.neuroimage.2007.09.073. Epub 2007 Oct 22.
2
Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage.
Neuroimage. 2008 Aug 15;42(2):559-67. doi: 10.1016/j.neuroimage.2008.05.012. Epub 2008 May 20.
4
MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study.
Alzheimers Res Ther. 2018 Sep 27;10(1):100. doi: 10.1186/s13195-018-0428-1.
5
Automatic classification of MR scans in Alzheimer's disease.
Brain. 2008 Mar;131(Pt 3):681-9. doi: 10.1093/brain/awm319. Epub 2008 Jan 17.
6
Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease.
Neuroimage. 2011 Sep 15;58(2):469-80. doi: 10.1016/j.neuroimage.2011.05.083. Epub 2011 Jun 16.
7
Effects of hardware heterogeneity on the performance of SVM Alzheimer's disease classifier.
Neuroimage. 2011 Oct 1;58(3):785-92. doi: 10.1016/j.neuroimage.2011.06.029. Epub 2011 Jun 25.
8
Optimizing Machine Learning Methods to Improve Predictive Models of Alzheimer's Disease.
J Alzheimers Dis. 2019;71(3):1027-1036. doi: 10.3233/JAD-190262.
9
ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer's disease.
Neuroimage Clin. 2014 Jan 4;4:461-72. doi: 10.1016/j.nicl.2013.12.012. eCollection 2014.

引用本文的文献

1
AI in Neurology: Everything, Everywhere, All at Once Part 1: Principles and Practice.
Ann Neurol. 2025 Aug;98(2):211-230. doi: 10.1002/ana.27225. Epub 2025 Jun 19.
3
Stiffness analysis of meningiomas using neural network-based inversion on MR Elastography.
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-5. doi: 10.1109/EMBC53108.2024.10781605.
5
Dimensional Neuroimaging Endophenotypes: Neurobiological Representations of Disease Heterogeneity Through Machine Learning.
Biol Psychiatry. 2024 Oct 1;96(7):564-584. doi: 10.1016/j.biopsych.2024.04.017. Epub 2024 May 6.
6
Boston Criteria v2.0 for Cerebral Amyloid Angiopathy Without Hemorrhage: An MRI-Neuropathologic Validation Study.
Neurology. 2024 May 28;102(10):e209386. doi: 10.1212/WNL.0000000000209386. Epub 2024 May 6.
8
An eXplainability Artificial Intelligence approach to brain connectivity in Alzheimer's disease.
Front Aging Neurosci. 2023 Aug 31;15:1238065. doi: 10.3389/fnagi.2023.1238065. eCollection 2023.
9
Uncovering Diverse Mechanistic Spreading Pathways in Disease Progression of Alzheimer's Disease.
J Alzheimers Dis Rep. 2023 Aug 11;7(1):855-872. doi: 10.3233/ADR-230081. eCollection 2023.

本文引用的文献

1
An overview of statistical learning theory.
IEEE Trans Neural Netw. 1999;10(5):988-99. doi: 10.1109/72.788640.
2
Tracking Alzheimer's disease.
Ann N Y Acad Sci. 2007 Feb;1097:183-214. doi: 10.1196/annals.1379.017.
3
Four subgroups of Alzheimer's disease based on patterns of atrophy using VBM and a unique pattern for early onset disease.
Neuroimage. 2006 Oct 15;33(1):17-26. doi: 10.1016/j.neuroimage.2006.06.010. Epub 2006 Aug 10.
4
The contribution of voxel-based morphometry in staging patients with mild cognitive impairment.
Neurology. 2006 Aug 8;67(3):453-60. doi: 10.1212/01.wnl.0000228243.56665.c2.
5
Age and gender effects on human brain anatomy: a voxel-based morphometric study in healthy elderly.
Neurobiol Aging. 2007 Jul;28(7):1075-87. doi: 10.1016/j.neurobiolaging.2006.05.018. Epub 2006 Jun 13.
6
Classification of structural images via high-dimensional image warping, robust feature extraction, and SVM.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):1-8. doi: 10.1007/11566465_1.
7
Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia.
Arch Neurol. 2006 May;63(5):674-81. doi: 10.1001/archneur.63.5.674.
8
Bias in error estimation when using cross-validation for model selection.
BMC Bioinformatics. 2006 Feb 23;7:91. doi: 10.1186/1471-2105-7-91.
9
Classifying spatial patterns of brain activity with machine learning methods: application to lie detection.
Neuroimage. 2005 Nov 15;28(3):663-8. doi: 10.1016/j.neuroimage.2005.08.009. Epub 2005 Oct 5.
10
Sex, apolipoprotein E epsilon 4 status, and hippocampal volume in mild cognitive impairment.
Arch Neurol. 2005 Jun;62(6):953-7. doi: 10.1001/archneur.62.6.953.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验