Gers F A, Schmidhuber E
IDSIA, 6928 Manno, Switzerland.
IEEE Trans Neural Netw. 2001;12(6):1333-40. doi: 10.1109/72.963769.
Previous work on learning regular languages from exemplary training sequences showed that long short-term memory (LSTM) outperforms traditional recurrent neural networks (RNNs). We demonstrate LSTMs superior performance on context-free language benchmarks for RNNs, and show that it works even better than previous hardwired or highly specialized architectures. To the best of our knowledge, LSTM variants are also the first RNNs to learn a simple context-sensitive language, namely a(n)b(n)c(n).
先前关于从示例训练序列中学习正则语言的研究表明,长短期记忆网络(LSTM)优于传统循环神经网络(RNN)。我们证明了LSTM在RNN的上下文无关语言基准测试中的卓越性能,并表明它甚至比以前的硬连线或高度专业化架构表现得更好。据我们所知,LSTM变体也是第一个学习简单上下文敏感语言(即a(n)b(n)c(n))的RNN。