Sheppard Kelly, Söll Dieter
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
J Mol Biol. 2008 Mar 28;377(3):831-44. doi: 10.1016/j.jmb.2008.01.016. Epub 2008 Jan 16.
Glutaminyl-tRNA synthetase and asparaginyl-tRNA synthetase evolved from glutamyl-tRNA synthetase and aspartyl-tRNA synthetase, respectively, after the split in the last universal communal ancestor (LUCA). Glutaminyl-tRNA(Gln) and asparaginyl-tRNA(Asn) were likely formed in LUCA by amidation of the mischarged species, glutamyl-tRNA(Gln) and aspartyl-tRNA(Asn), by tRNA-dependent amidotransferases, as is still the case in most bacteria and all known archaea. The amidotransferase GatCAB is found in both domains of life, while the heterodimeric amidotransferase GatDE is found only in Archaea. The GatB and GatE subunits belong to a unique protein family that includes Pet112 that is encoded in the nuclear genomes of numerous eukaryotes. GatE was thought to have evolved from GatB after the emergence of the modern lines of decent. Our phylogenetic analysis though places the split between GatE and GatB, prior to the phylogenetic divide between Bacteria and Archaea, and Pet112 to be of mitochondrial origin. In addition, GatD appears to have emerged prior to the bacterial-archaeal phylogenetic divide. Thus, while GatDE is an archaeal signature protein, it likely was present in LUCA together with GatCAB. Archaea retained both amidotransferases, while Bacteria emerged with only GatCAB. The presence of GatDE has favored a unique archaeal tRNA(Gln) that may be preventing the acquisition of glutaminyl-tRNA synthetase in Archaea. Archaeal GatCAB, on the other hand, has not favored a distinct tRNA(Asn), suggesting that tRNA(Asn) recognition is not a major barrier to the retention of asparaginyl-tRNA synthetase in many Archaea.
谷氨酰胺-tRNA合成酶和天冬酰胺-tRNA合成酶分别是在最后一个普遍共同祖先(LUCA)分裂后,从谷氨酰-tRNA合成酶和天冬氨酰-tRNA合成酶进化而来的。在LUCA中,谷氨酰胺-tRNA(Gln)和天冬酰胺-tRNA(Asn)可能是由错配的谷氨酰-tRNA(Gln)和天冬氨酰-tRNA(Asn)通过tRNA依赖性酰胺转移酶酰胺化形成的,大多数细菌和所有已知古菌目前仍是这种情况。酰胺转移酶GatCAB存在于生命的两个域中,而异二聚体酰胺转移酶GatDE仅存在于古菌中。GatB和GatE亚基属于一个独特的蛋白质家族,该家族包括许多真核生物核基因组中编码的Pet112。人们认为GatE是在现代谱系出现后从GatB进化而来的。然而,我们的系统发育分析表明,GatE和GatB的分化发生在细菌和古菌的系统发育分化之前,并且Pet112起源于线粒体。此外,GatD似乎在细菌-古菌系统发育分化之前就已出现。因此,虽然GatDE是一种古菌标志性蛋白,但它可能与GatCAB一起存在于LUCA中。古菌保留了这两种酰胺转移酶,而细菌出现时仅含有GatCAB。GatDE的存在有利于一种独特的古菌tRNA(Gln),这可能阻止了古菌中谷氨酰胺-tRNA合成酶的获得。另一方面,古菌的GatCAB并不有利于一种独特的tRNA(Asn),这表明tRNA(Asn)识别不是许多古菌中天冬酰胺-tRNA合成酶保留的主要障碍。