Hohn Michael J, Park Hee-Sung, O'Donoghue Patrick, Schnitzbauer Michael, Söll Dieter
Department of Molecular Biophysics, Yale University, New Haven, CT 06520-8114, USA.
Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18095-100. doi: 10.1073/pnas.0608762103. Epub 2006 Nov 16.
The molecular basis of the genetic code manifests itself in the interaction of the aminoacyl-tRNA synthetases and their cognate tRNAs. The fundamental biological question regarding these enzymes' role in the evolution of the genetic code remains open. Here we probe this question in a system in which the same tRNA species is aminoacylated by two unrelated synthetases. Should this tRNA possess major identity elements common to both enzymes, this would favor a scenario where the aminoacyl-tRNA synthetases evolved in the context of preestablished tRNA identity, i.e., after the universal genetic code emerged. An experimental system is provided by the recently discovered O-phosphoseryl-tRNA synthetase (SepRS), which acylates tRNA(Cys) with phosphoserine (Sep), and the well known cysteinyl-tRNA synthetase, which charges the same tRNA with cysteine. We determined the identity elements of Methanocaldococcus jannaschii tRNA(Cys) in the aminoacylation reaction for the two Methanococcus maripaludis synthetases SepRS (forming Sep-tRNA(Cys)) and cysteinyl-tRNA synthetase (forming Cys-tRNA(Cys)). The major elements, the discriminator base and the three anticodon bases, are shared by both tRNA synthetases. An evolutionary analysis of archaeal, bacterial, and eukaryotic tRNA(Cys) sequences predicted additional SepRS-specific minor identity elements (G37, A47, and A59) and suggested the dominance of vertical inheritance for tRNA(Cys) from a single common ancestor. Transplantation of the identified identity elements into the Escherichia coli tRNA(Gly) scaffold endowed facile phosphoserylation activity on the resulting chimera. Thus, tRNA(Cys) identity is an ancient RNA record that depicts the emergence of the universal genetic code before the evolution of the modern aminoacylation systems.
遗传密码的分子基础体现在氨酰 - tRNA合成酶与其对应的tRNA之间的相互作用上。关于这些酶在遗传密码进化中作用的基本生物学问题仍然没有答案。在这里,我们在一个系统中探究这个问题,在该系统中,同一种tRNA被两种不相关的合成酶进行氨酰化。如果这种tRNA拥有两种酶共有的主要识别元件,这将支持一种情况,即氨酰 - tRNA合成酶是在预先建立的tRNA识别背景下进化的,也就是说,在通用遗传密码出现之后。最近发现的O - 磷酸丝氨酰 - tRNA合成酶(SepRS)提供了一个实验系统,它用磷酸丝氨酸(Sep)使tRNA(Cys)氨酰化,以及著名的半胱氨酰 - tRNA合成酶,它用半胱氨酸使同一种tRNA负载。我们确定了詹氏甲烷球菌tRNA(Cys)在马氏甲烷球菌的两种合成酶SepRS(形成Sep - tRNA(Cys))和半胱氨酰 - tRNA合成酶(形成Cys - tRNA(Cys))的氨酰化反应中的识别元件。两种tRNA合成酶共享主要元件,即判别碱基和三个反密码子碱基。对古菌、细菌和真核生物tRNA(Cys)序列的进化分析预测了额外的SepRS特异性次要识别元件(G37、A47和A59),并表明tRNA(Cys)从单个共同祖先垂直遗传的主导地位。将鉴定出的识别元件移植到大肠杆菌tRNA(Gly)支架上,使所得嵌合体具有容易的磷酸丝氨酰化活性。因此,tRNA(Cys)识别是一种古老的RNA记录,描绘了现代氨酰化系统进化之前通用遗传密码的出现。