Suppr超能文献

遗传密码扩展中的“非流行”正交对。

"Not-so-popular" orthogonal pairs in genetic code expansion.

机构信息

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA.

Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA.

出版信息

Protein Sci. 2023 Feb;32(2):e4559. doi: 10.1002/pro.4559.

Abstract

During the past decade, genetic code expansion has been proved to be a powerful tool for protein studies and engineering. As the key part, a series of orthogonal pairs have been developed to site-specifically incorporate hundreds of noncanonical amino acids (ncAAs) into proteins by using bacteria, yeast, mammalian cells, animals, or plants as hosts. Among them, the pair of tyrosyl-tRNA synthetase/tRNA from Methanococcus jannaschii and the pair of pyrrolysyl-tRNA synthetase/tRNA from Methanosarcina species are the most popular ones. Recently, other "not-so-popular" orthogonal pairs have started to attract attentions, because they can provide more choices of ncAA candidates and are necessary for simultaneous incorporation of multiple ncAAs into a single protein. Here, we summarize the development and applications of those "not-so-popular" orthogonal pairs, providing guidance for studying and engineering proteins.

摘要

在过去的十年中,遗传密码扩展已被证明是研究和工程蛋白质的强大工具。作为关键部分,已经开发出一系列正交对,通过使用细菌、酵母、哺乳动物细胞、动物或植物作为宿主,将数百种非天然氨基酸(ncAA)定点掺入蛋白质中。其中,来源于产甲烷球菌(Methanococcus jannaschii)的酪氨酸 tRNA 合成酶/tRNA 对和来源于甲烷八叠球菌(Methanosarcina species)的吡咯赖氨酸 tRNA 合成酶/tRNA 对是最受欢迎的一对。最近,其他“不太受欢迎”的正交对开始引起关注,因为它们可以提供更多 ncAA 候选物的选择,并且对于将多个 ncAA 同时掺入单个蛋白质是必需的。在这里,我们总结了这些“不太受欢迎”的正交对的发展和应用,为研究和工程蛋白质提供了指导。

相似文献

1
"Not-so-popular" orthogonal pairs in genetic code expansion.
Protein Sci. 2023 Feb;32(2):e4559. doi: 10.1002/pro.4559.
2
An Evolved Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetase/tRNA Pair Is Highly Active and Orthogonal in Mammalian Cells.
Biochemistry. 2019 Feb 5;58(5):387-390. doi: 10.1021/acs.biochem.8b00808. Epub 2018 Sep 27.
4
Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs.
Nat Chem. 2018 Aug;10(8):831-837. doi: 10.1038/s41557-018-0052-5. Epub 2018 May 28.
5
Update of the Pyrrolysyl-tRNA Synthetase/tRNA Pair and Derivatives for Genetic Code Expansion.
J Bacteriol. 2023 Feb 22;205(2):e0038522. doi: 10.1128/jb.00385-22. Epub 2023 Jan 25.
7
Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome.
Nature. 2010 Mar 18;464(7287):441-4. doi: 10.1038/nature08817. Epub 2010 Feb 14.
8
Exploration of Pyrrolysyl-tRNA Synthetase Activity in Yeast.
ACS Synth Biol. 2022 May 20;11(5):1824-1834. doi: 10.1021/acssynbio.2c00001. Epub 2022 Apr 13.
10
Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming.
Chem Rev. 2024 Oct 9;124(19):11008-11062. doi: 10.1021/acs.chemrev.4c00243. Epub 2024 Sep 5.

引用本文的文献

1
Removing redundancy of the NCN codons for maximal sense codon reassignment.
Chem Sci. 2025 Apr 22;16(20):8932-8939. doi: 10.1039/d4sc06740a. eCollection 2025 May 21.
2
Pyrrolysine Aminoacyl-tRNA Synthetase as a Tool for Expanding the Genetic Code.
Int J Mol Sci. 2025 Jan 10;26(2):539. doi: 10.3390/ijms26020539.
3
Beyond , Pharmaceutical Molecule Production in Cell-Free Systems and the Use of Noncanonical Amino Acids Therein.
Chem Rev. 2025 Feb 12;125(3):1303-1331. doi: 10.1021/acs.chemrev.4c00126. Epub 2025 Jan 22.
4
Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis.
Chem Rev. 2024 Oct 9;124(19):10877-10923. doi: 10.1021/acs.chemrev.4c00136. Epub 2024 Sep 27.
5
Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology.
Chem Rev. 2024 Sep 25;124(18):10577-10617. doi: 10.1021/acs.chemrev.3c00938. Epub 2024 Aug 29.
6
Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion.
Chem Rev. 2024 Aug 28;124(16):9580-9608. doi: 10.1021/acs.chemrev.4c00031. Epub 2024 Jul 2.
7
Genetic Encoding of Phosphorylated Amino Acids into Proteins.
Chem Rev. 2024 May 22;124(10):6592-6642. doi: 10.1021/acs.chemrev.4c00110. Epub 2024 May 1.
8
Orthogonal Translation for Site-Specific Installation of Post-translational Modifications.
Chem Rev. 2024 Mar 13;124(5):2805-2838. doi: 10.1021/acs.chemrev.3c00850. Epub 2024 Feb 19.
9
Xeno Amino Acids: A Look into Biochemistry as We Do Not Know It.
Life (Basel). 2023 Nov 29;13(12):2281. doi: 10.3390/life13122281.
10
Incorporation of Aliphatic Proline Residues into Recombinantly Produced Insulin.
ACS Chem Biol. 2023 Dec 15;18(12):2574-2581. doi: 10.1021/acschembio.3c00561. Epub 2023 Nov 14.

本文引用的文献

1
Reprogramming the genetic code.
Nat Rev Genet. 2021 Mar;22(3):169-184. doi: 10.1038/s41576-020-00307-7. Epub 2020 Dec 14.
2
Using Genetic Code Expansion for Protein Biochemical Studies.
Front Bioeng Biotechnol. 2020 Oct 19;8:598577. doi: 10.3389/fbioe.2020.598577. eCollection 2020.
3
An orthogonal seryl-tRNA synthetase/tRNA pair for noncanonical amino acid mutagenesis in Escherichia coli.
Bioorg Med Chem. 2020 Oct 15;28(20):115662. doi: 10.1016/j.bmc.2020.115662. Epub 2020 Jul 28.
5
Upgrading aminoacyl-tRNA synthetases for genetic code expansion.
Curr Opin Chem Biol. 2018 Oct;46:115-122. doi: 10.1016/j.cbpa.2018.07.014. Epub 2018 Jul 27.
6
Recent Development of Genetic Code Expansion for Posttranslational Modification Studies.
Molecules. 2018 Jul 8;23(7):1662. doi: 10.3390/molecules23071662.
7
Genetically Incorporating Two Distinct Post-translational Modifications into One Protein Simultaneously.
ACS Synth Biol. 2018 Feb 16;7(2):689-695. doi: 10.1021/acssynbio.7b00408. Epub 2018 Jan 17.
8
Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria.
Nat Chem Biol. 2017 Aug;13(8):845-849. doi: 10.1038/nchembio.2405. Epub 2017 Jun 12.
9
Biosynthesis and genetic encoding of phosphothreonine through parallel selection and deep sequencing.
Nat Methods. 2017 Jul;14(7):729-736. doi: 10.1038/nmeth.4302. Epub 2017 May 29.
10
An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes.
Nat Chem Biol. 2017 Apr;13(4):446-450. doi: 10.1038/nchembio.2312. Epub 2017 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验