Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA.
Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA.
Protein Sci. 2023 Feb;32(2):e4559. doi: 10.1002/pro.4559.
During the past decade, genetic code expansion has been proved to be a powerful tool for protein studies and engineering. As the key part, a series of orthogonal pairs have been developed to site-specifically incorporate hundreds of noncanonical amino acids (ncAAs) into proteins by using bacteria, yeast, mammalian cells, animals, or plants as hosts. Among them, the pair of tyrosyl-tRNA synthetase/tRNA from Methanococcus jannaschii and the pair of pyrrolysyl-tRNA synthetase/tRNA from Methanosarcina species are the most popular ones. Recently, other "not-so-popular" orthogonal pairs have started to attract attentions, because they can provide more choices of ncAA candidates and are necessary for simultaneous incorporation of multiple ncAAs into a single protein. Here, we summarize the development and applications of those "not-so-popular" orthogonal pairs, providing guidance for studying and engineering proteins.
在过去的十年中,遗传密码扩展已被证明是研究和工程蛋白质的强大工具。作为关键部分,已经开发出一系列正交对,通过使用细菌、酵母、哺乳动物细胞、动物或植物作为宿主,将数百种非天然氨基酸(ncAA)定点掺入蛋白质中。其中,来源于产甲烷球菌(Methanococcus jannaschii)的酪氨酸 tRNA 合成酶/tRNA 对和来源于甲烷八叠球菌(Methanosarcina species)的吡咯赖氨酸 tRNA 合成酶/tRNA 对是最受欢迎的一对。最近,其他“不太受欢迎”的正交对开始引起关注,因为它们可以提供更多 ncAA 候选物的选择,并且对于将多个 ncAA 同时掺入单个蛋白质是必需的。在这里,我们总结了这些“不太受欢迎”的正交对的发展和应用,为研究和工程蛋白质提供了指导。