Suppr超能文献

通过平行筛选和深度测序实现磷酸苏氨酸的生物合成与遗传编码

Biosynthesis and genetic encoding of phosphothreonine through parallel selection and deep sequencing.

作者信息

Zhang Michael Shaofei, Brunner Simon F, Huguenin-Dezot Nicolas, Liang Alexandria D, Schmied Wolfgang H, Rogerson Daniel T, Chin Jason W

机构信息

Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, England, UK.

出版信息

Nat Methods. 2017 Jul;14(7):729-736. doi: 10.1038/nmeth.4302. Epub 2017 May 29.

Abstract

The phosphorylation of threonine residues in proteins regulates diverse processes in eukaryotic cells, and thousands of threonine phosphorylations have been identified. An understanding of how threonine phosphorylation regulates biological function will be accelerated by general methods to biosynthesize defined phosphoproteins. Here we describe a rapid approach for directly discovering aminoacyl-tRNA synthetase-tRNA pairs that selectively incorporate non-natural amino acids into proteins; our method uses parallel positive selections combined with deep sequencing and statistical analysis and enables the direct, scalable discovery of aminoacyl-tRNA synthetase-tRNA pairs with mutually orthogonal substrate specificity. By combining a method to biosynthesize phosphothreonine in cells with this selection approach, we discover a phosphothreonyl-tRNA synthetase-tRNA pair and create an entirely biosynthetic route to incorporating phosphothreonine in proteins. We biosynthesize several phosphoproteins and demonstrate phosphoprotein structure determination and synthetic protein kinase activation.

摘要

蛋白质中苏氨酸残基的磷酸化调节真核细胞中的多种过程,并且已经鉴定出数千种苏氨酸磷酸化。通过生物合成特定磷蛋白的通用方法,将加速对苏氨酸磷酸化如何调节生物学功能的理解。在这里,我们描述了一种直接发现能将非天然氨基酸选择性掺入蛋白质中的氨酰-tRNA合成酶-tRNA对的快速方法;我们的方法使用平行阳性选择结合深度测序和统计分析,并能够直接、可扩展地发现具有相互正交底物特异性的氨酰-tRNA合成酶-tRNA对。通过将细胞中生物合成磷酸苏氨酸的方法与这种选择方法相结合,我们发现了一种磷酸苏氨酰-tRNA合成酶-tRNA对,并创建了一条将磷酸苏氨酸掺入蛋白质中的完全生物合成途径。我们生物合成了几种磷蛋白,并展示了磷蛋白结构测定和合成蛋白激酶激活。

相似文献

1
Biosynthesis and genetic encoding of phosphothreonine through parallel selection and deep sequencing.
Nat Methods. 2017 Jul;14(7):729-736. doi: 10.1038/nmeth.4302. Epub 2017 May 29.
2
Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome.
Nature. 2010 Mar 18;464(7287):441-4. doi: 10.1038/nature08817. Epub 2010 Feb 14.
3
Rapid discovery and evolution of orthogonal aminoacyl-tRNA synthetase-tRNA pairs.
Nat Biotechnol. 2020 Aug;38(8):989-999. doi: 10.1038/s41587-020-0479-2. Epub 2020 Apr 13.
4
Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs.
Nat Chem. 2018 Aug;10(8):831-837. doi: 10.1038/s41557-018-0052-5. Epub 2018 May 28.
5
De novo generation of mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs.
J Am Chem Soc. 2010 Feb 24;132(7):2142-4. doi: 10.1021/ja9068722.
6
tRNA: Structure, function, and applications.
RNA Biol. 2018;15(4-5):441-452. doi: 10.1080/15476286.2017.1356561. Epub 2017 Sep 13.
7
Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog.
Nat Chem Biol. 2015 Jul;11(7):496-503. doi: 10.1038/nchembio.1823. Epub 2015 Jun 1.
9
An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity.
Biochemistry. 2011 Mar 22;50(11):1894-900. doi: 10.1021/bi101929e. Epub 2011 Feb 1.
10
An Evolved Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetase/tRNA Pair Is Highly Active and Orthogonal in Mammalian Cells.
Biochemistry. 2019 Feb 5;58(5):387-390. doi: 10.1021/acs.biochem.8b00808. Epub 2018 Sep 27.

引用本文的文献

1
Nucleoside diphosphate kinase A (NME1) catalyses its own oligophosphorylation.
Nat Chem. 2025 Aug 20. doi: 10.1038/s41557-025-01915-8.
2
Examining the Role of Threonine Phosphorylation in Ubiquitin's Function Using Chemical Protein Synthesis.
JACS Au. 2025 Apr 22;5(5):2148-2158. doi: 10.1021/jacsau.5c00067. eCollection 2025 May 26.
3
Biological Regulation Studied and with Modified Proteins.
Acc Chem Res. 2025 Apr 1;58(7):1109-1119. doi: 10.1021/acs.accounts.5c00023. Epub 2025 Mar 12.
4
Genetic Code Expansion: Recent Developments and Emerging Applications.
Chem Rev. 2025 Jan 22;125(2):523-598. doi: 10.1021/acs.chemrev.4c00216. Epub 2024 Dec 31.
5
Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies.
Chem Rev. 2024 Nov 27;124(22):12498-12550. doi: 10.1021/acs.chemrev.4c00181. Epub 2024 Nov 7.
6
Genetic Code Expansion Approaches to Decipher the Ubiquitin Code.
Chem Rev. 2024 Oct 23;124(20):11544-11584. doi: 10.1021/acs.chemrev.4c00375. Epub 2024 Sep 23.
7
Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming.
Chem Rev. 2024 Oct 9;124(19):11008-11062. doi: 10.1021/acs.chemrev.4c00243. Epub 2024 Sep 5.
8
Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology.
Chem Rev. 2024 Sep 25;124(18):10577-10617. doi: 10.1021/acs.chemrev.3c00938. Epub 2024 Aug 29.
9
Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids.
Chem Rev. 2024 Sep 25;124(18):10281-10362. doi: 10.1021/acs.chemrev.3c00878. Epub 2024 Aug 9.

本文引用的文献

2
Defining synonymous codon compression schemes by genome recoding.
Nature. 2016 Nov 3;539(7627):59-64. doi: 10.1038/nature20124. Epub 2016 Oct 24.
4
Synthesis of Isomeric Phosphoubiquitin Chains Reveals that Phosphorylation Controls Deubiquitinase Activity and Specificity.
Cell Rep. 2016 Jul 26;16(4):1180-1193. doi: 10.1016/j.celrep.2016.06.064. Epub 2016 Jul 14.
5
Photoactivation of Mutant Isocitrate Dehydrogenase 2 Reveals Rapid Cancer-Associated Metabolic and Epigenetic Changes.
J Am Chem Soc. 2016 Jan 27;138(3):718-21. doi: 10.1021/jacs.5b07627. Epub 2016 Jan 12.
6
Phosphorylation of Threonine 794 on Tie1 by Rac1/PAK1 Reveals a Novel Angiogenesis Regulatory Pathway.
PLoS One. 2015 Oct 5;10(10):e0139614. doi: 10.1371/journal.pone.0139614. eCollection 2015.
8
Expanding the ubiquitin code through post-translational modification.
EMBO Rep. 2015 Sep;16(9):1071-83. doi: 10.15252/embr.201540891. Epub 2015 Aug 12.
9
Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog.
Nat Chem Biol. 2015 Jul;11(7):496-503. doi: 10.1038/nchembio.1823. Epub 2015 Jun 1.
10
Optical Control of CRISPR/Cas9 Gene Editing.
J Am Chem Soc. 2015 May 6;137(17):5642-5. doi: 10.1021/ja512664v. Epub 2015 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验