Suppr超能文献

真菌病原体光滑念珠菌对氧化应激的高抗性由单一过氧化氢酶Cta1p介导,并受转录因子Yap1p、Skn7p、Msn2p和Msn4p控制。

High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p.

作者信息

Cuéllar-Cruz Mayra, Briones-Martin-del-Campo Marcela, Cañas-Villamar Israel, Montalvo-Arredondo Javier, Riego-Ruiz Lina, Castaño Irene, De Las Peñas Alejandro

机构信息

División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México.

出版信息

Eukaryot Cell. 2008 May;7(5):814-25. doi: 10.1128/EC.00011-08. Epub 2008 Mar 28.

Abstract

We characterized the oxidative stress response of Candida glabrata to better understand the virulence of this fungal pathogen. C. glabrata could withstand higher concentrations of H(2)O(2) than Saccharomyces cerevisiae and even Candida albicans. Stationary-phase cells were extremely resistant to oxidative stress, and this resistance was dependent on the concerted roles of stress-related transcription factors Yap1p, Skn7p, and Msn4p. We showed that growing cells of C. glabrata were able to adapt to high levels of H(2)O(2) and that this adaptive response was dependent on Yap1p and Skn7p and partially on the general stress transcription factors Msn2p and Msn4p. C. glabrata has a single catalase gene, CTA1, which was absolutely required for resistance to H(2)O(2) in vitro. However, in a mouse model of systemic infection, a strain lacking CTA1 showed no effect on virulence.

摘要

我们对光滑念珠菌的氧化应激反应进行了表征,以更好地了解这种真菌病原体的毒力。与酿酒酵母甚至白色念珠菌相比,光滑念珠菌能够耐受更高浓度的过氧化氢。稳定期细胞对氧化应激具有极强的抗性,这种抗性依赖于应激相关转录因子Yap1p、Skn7p和Msn4p的协同作用。我们发现,光滑念珠菌的生长细胞能够适应高水平的过氧化氢,这种适应性反应依赖于Yap1p和Skn7p,部分依赖于一般应激转录因子Msn2p和Msn4p。光滑念珠菌有一个单一的过氧化氢酶基因CTA1,该基因是体外抵抗过氧化氢绝对必需的。然而,在系统性感染的小鼠模型中,缺乏CTA1的菌株对毒力没有影响。

相似文献

2
Skn7p is involved in oxidative stress response and virulence of Candida glabrata.
Mycopathologia. 2010 Feb;169(2):81-90. doi: 10.1007/s11046-009-9233-5. Epub 2009 Aug 20.
3
Oxidative stress response to menadione and cumene hydroperoxide in the opportunistic fungal pathogen Candida glabrata.
Mem Inst Oswaldo Cruz. 2009 Jul;104(4):649-54. doi: 10.1590/s0074-02762009000400020.
5
Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors.
Mol Microbiol. 2008 Aug;69(3):603-20. doi: 10.1111/j.1365-2958.2008.06301.x. Epub 2008 Jun 28.
6
The EPA2 adhesin encoding gene is responsive to oxidative stress in the opportunistic fungal pathogen Candida glabrata.
Curr Genet. 2015 Nov;61(4):529-44. doi: 10.1007/s00294-015-0473-2. Epub 2015 Jan 14.
8
The oxidative stress response of the opportunistic fungal pathogen Candida glabrata.
Rev Iberoam Micol. 2014 Jan-Mar;31(1):67-71. doi: 10.1016/j.riam.2013.09.012. Epub 2013 Nov 19.
9
SKN7 of Candida albicans: mutant construction and phenotype analysis.
Infect Immun. 2004 Apr;72(4):2390-4. doi: 10.1128/IAI.72.4.2390-2394.2004.
10
Candida glabrata STE12 is required for wild-type levels of virulence and nitrogen starvation induced filamentation.
Mol Microbiol. 2003 Nov;50(4):1309-18. doi: 10.1046/j.1365-2958.2003.03755.x.

引用本文的文献

1
New insights on Drug's design against candidiasis on the fructose biphosphate aldolase (Fba1) and the pyruvate kinase (Pk) of .
Biochem Biophys Rep. 2025 Jul 25;43:102175. doi: 10.1016/j.bbrep.2025.102175. eCollection 2025 Sep.
2
Increased fungal burden in the gastrointestinal tract of brain-dead organ donors.
Microbiol Spectr. 2025 Aug 5;13(8):e0334124. doi: 10.1128/spectrum.03341-24. Epub 2025 Jun 18.
3
Is metabolic generalism the Breakfast of Champions for pathogenic Candida species?
PLoS Pathog. 2024 Dec 11;20(12):e1012752. doi: 10.1371/journal.ppat.1012752. eCollection 2024 Dec.
4
Antibiofilm Activity of PDMS/TiO against through Inhibited Hydrophobic Recovery.
ACS Omega. 2024 Oct 3;9(41):42593-42601. doi: 10.1021/acsomega.4c07869. eCollection 2024 Oct 15.
6
Comparative fitness trade-offs associated with azole resistance in clinical isolates.
Heliyon. 2024 Jun 4;10(12):e32386. doi: 10.1016/j.heliyon.2024.e32386. eCollection 2024 Jun 30.
7
and : global priority pathogens.
Microbiol Mol Biol Rev. 2024 Jun 27;88(2):e0002123. doi: 10.1128/mmbr.00021-23. Epub 2024 Jun 4.
8
Spectrum of activity and mechanisms of azole-bisphosphonate synergy in pathogenic .
Microbiol Spectr. 2024 Jun 4;12(6):e0012124. doi: 10.1128/spectrum.00121-24. Epub 2024 May 2.
9
Mechanism of furfural toxicity and metabolic strategies to engineer tolerance in microbial strains.
Microb Cell Fact. 2023 Oct 28;22(1):221. doi: 10.1186/s12934-023-02223-x.
10
Divergence of TORC1-mediated stress response leads to novel acquired stress resistance in a pathogenic yeast.
PLoS Pathog. 2023 Oct 23;19(10):e1011748. doi: 10.1371/journal.ppat.1011748. eCollection 2023 Oct.

本文引用的文献

1
Fungal responses to reactive oxygen species.
Med Mycol. 2006 Sep 1;44(Supplement_1):S101-S107. doi: 10.1080/13693780600900080.
2
An Ustilago maydis gene involved in H2O2 detoxification is required for virulence.
Plant Cell. 2007 Jul;19(7):2293-309. doi: 10.1105/tpc.107.052332. Epub 2007 Jul 6.
3
A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata.
Proc Natl Acad Sci U S A. 2007 May 1;104(18):7628-33. doi: 10.1073/pnas.0611195104. Epub 2007 Apr 24.
4
Epidemiology of invasive candidiasis: a persistent public health problem.
Clin Microbiol Rev. 2007 Jan;20(1):133-63. doi: 10.1128/CMR.00029-06.
5
[The stress response in the yeast Saccharomyces cerevisiae].
Rev Latinoam Microbiol. 2004 Jan-Jun;46(1-2):24-46.
7
Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies.
Mol Microbiol. 2006 Aug;61(3):704-22. doi: 10.1111/j.1365-2958.2006.05235.x. Epub 2006 Jun 27.
8
Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus.
Nat Rev Microbiol. 2006 Jun;4(6):435-44. doi: 10.1038/nrmicro1426.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验