Suppr超能文献

树突兴奋性与突触可塑性。

Dendritic excitability and synaptic plasticity.

作者信息

Sjöström P Jesper, Rancz Ede A, Roth Arnd, Häusser Michael

机构信息

Wolfson Institute for Biomedical Research and Department of Physiology, University College London, London, United Kingdom.

出版信息

Physiol Rev. 2008 Apr;88(2):769-840. doi: 10.1152/physrev.00016.2007.

Abstract

Most synaptic inputs are made onto the dendritic tree. Recent work has shown that dendrites play an active role in transforming synaptic input into neuronal output and in defining the relationships between active synapses. In this review, we discuss how these dendritic properties influence the rules governing the induction of synaptic plasticity. We argue that the location of synapses in the dendritic tree, and the type of dendritic excitability associated with each synapse, play decisive roles in determining the plastic properties of that synapse. Furthermore, since the electrical properties of the dendritic tree are not static, but can be altered by neuromodulators and by synaptic activity itself, we discuss how learning rules may be dynamically shaped by tuning dendritic function. We conclude by describing how this reciprocal relationship between plasticity of dendritic excitability and synaptic plasticity has changed our view of information processing and memory storage in neuronal networks.

摘要

大多数突触输入作用于树突。最近的研究表明,树突在将突触输入转化为神经元输出以及定义活跃突触之间的关系方面发挥着积极作用。在这篇综述中,我们讨论这些树突特性如何影响突触可塑性诱导的规则。我们认为,突触在树突中的位置以及与每个突触相关的树突兴奋性类型,在决定该突触的可塑性方面起着决定性作用。此外,由于树突的电特性并非一成不变,而是可被神经调质和突触活动本身改变,因此我们讨论学习规则如何通过调节树突功能而动态形成。我们通过描述树突兴奋性可塑性与突触可塑性之间的这种相互关系如何改变我们对神经网络中信息处理和记忆存储的看法来结束本文。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验