Suppr超能文献

转录因子Sko1和PAS激酶Psk1对白色念珠菌细胞壁损伤反应的调控

Regulation of the Candida albicans cell wall damage response by transcription factor Sko1 and PAS kinase Psk1.

作者信息

Rauceo Jason M, Blankenship Jill R, Fanning Saranna, Hamaker Jessica J, Deneault Jean-Sebastien, Smith Frank J, Nantel Andre, Mitchell Aaron P

机构信息

Department of Microbiology and Institute of Cancer Research, Columbia University, New York, NY 10032, USA.

出版信息

Mol Biol Cell. 2008 Jul;19(7):2741-51. doi: 10.1091/mbc.e08-02-0191. Epub 2008 Apr 23.

Abstract

The environmental niche of each fungus places distinct functional demands on the cell wall. Hence cell wall regulatory pathways may be highly divergent. We have pursued this hypothesis through analysis of Candida albicans transcription factor mutants that are hypersensitive to caspofungin, an inhibitor of beta-1,3-glucan synthase. We report here that mutations in SKO1 cause this phenotype. C. albicans Sko1 undergoes Hog1-dependent phosphorylation after osmotic stress, like its Saccharomyces cerevisiae orthologues, thus arguing that this Hog1-Sko1 relationship is conserved. However, Sko1 has a distinct role in the response to cell wall inhibition because 1) sko1 mutants are much more sensitive to caspofungin than hog1 mutants; 2) Sko1 does not undergo detectable phosphorylation in response to caspofungin; 3) SKO1 transcript levels are induced by caspofungin in both wild-type and hog1 mutant strains; and 4) sko1 mutants are defective in expression of caspofungin-inducible genes that are not induced by osmotic stress. Upstream Sko1 regulators were identified from a panel of caspofungin-hypersensitive protein kinase-defective mutants. Our results show that protein kinase Psk1 is required for expression of SKO1 and of Sko1-dependent genes in response to caspofungin. Thus Psk1 and Sko1 lie in a newly described signal transduction pathway.

摘要

每种真菌的环境生态位对细胞壁提出了不同的功能需求。因此,细胞壁调节途径可能高度不同。我们通过分析对β-1,3-葡聚糖合酶抑制剂卡泊芬净高度敏感的白色念珠菌转录因子突变体来探究这一假设。我们在此报告,SKO1中的突变导致了这种表型。白色念珠菌Sko1在渗透应激后会像其酿酒酵母同源物一样经历Hog1依赖性磷酸化,因此表明这种Hog1-Sko1关系是保守的。然而,Sko1在对细胞壁抑制的反应中具有独特作用,因为:1)sko1突变体比hog1突变体对卡泊芬净更敏感;2)Sko1在对卡泊芬净的反应中未发生可检测到的磷酸化;3)在野生型和hog1突变体菌株中,卡泊芬净均可诱导SKO1转录水平;4)sko1突变体在卡泊芬净诱导的、不受渗透应激诱导的基因表达方面存在缺陷。从一组对卡泊芬净高度敏感的蛋白激酶缺陷型突变体中鉴定出了Sko1的上游调节因子。我们的结果表明,蛋白激酶Psk1是响应卡泊芬净时SKO1及Sko1依赖性基因表达所必需的。因此,Psk1和Sko1处于一条新描述的信号转导途径中。

相似文献

1
Regulation of the Candida albicans cell wall damage response by transcription factor Sko1 and PAS kinase Psk1.
Mol Biol Cell. 2008 Jul;19(7):2741-51. doi: 10.1091/mbc.e08-02-0191. Epub 2008 Apr 23.
2
An expanded cell wall damage signaling network is comprised of the transcription factors Rlm1 and Sko1 in Candida albicans.
PLoS Genet. 2020 Jul 8;16(7):e1008908. doi: 10.1371/journal.pgen.1008908. eCollection 2020 Jul.
4
Transcriptional regulation of the caspofungin-induced cell wall damage response in Candida albicans.
Curr Genet. 2020 Dec;66(6):1059-1068. doi: 10.1007/s00294-020-01105-8. Epub 2020 Sep 2.
7
Rapid redistribution of phosphatidylinositol-(4,5)-bisphosphate and septins during the Candida albicans response to caspofungin.
Antimicrob Agents Chemother. 2012 Sep;56(9):4614-24. doi: 10.1128/AAC.00112-12. Epub 2012 Jun 11.
9
The Sch9 kinase is a chromatin-associated transcriptional activator of osmostress-responsive genes.
EMBO J. 2007 Jul 11;26(13):3098-108. doi: 10.1038/sj.emboj.7601756. Epub 2007 Jun 14.
10
The zinc cluster transcription factor Czf1 regulates cell wall architecture and integrity in Candida albicans.
Mol Microbiol. 2021 Aug;116(2):483-497. doi: 10.1111/mmi.14727. Epub 2021 May 11.

引用本文的文献

1
Physiological adventures in : farnesol and ubiquinones.
Microbiol Mol Biol Rev. 2024 Mar 27;88(1):e0008122. doi: 10.1128/mmbr.00081-22. Epub 2024 Mar 4.
3
The Role of Sfp1 in Cell Wall Maintenance.
J Fungi (Basel). 2022 Nov 13;8(11):1196. doi: 10.3390/jof8111196.
4
Application of the Mutant Libraries for Functional Genomics.
Int J Mol Sci. 2022 Oct 14;23(20):12307. doi: 10.3390/ijms232012307.
5
Caspofungin resistance in Candida albicans: genetic factors and synergistic compounds for combination therapies.
Braz J Microbiol. 2022 Sep;53(3):1101-1113. doi: 10.1007/s42770-022-00739-9. Epub 2022 Mar 29.
6
The SPFH Protein Superfamily in Fungi: Impact on Mitochondrial Function and Implications in Virulence.
Microorganisms. 2021 Nov 3;9(11):2287. doi: 10.3390/microorganisms9112287.
9
The Roles of Chromatin Accessibility in Regulating the White-Opaque Phenotypic Switch.
J Fungi (Basel). 2021 Jan 9;7(1):37. doi: 10.3390/jof7010037.

本文引用的文献

1
UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence.
Mol Biol Cell. 2008 Apr;19(4):1354-65. doi: 10.1091/mbc.e07-11-1110. Epub 2008 Jan 23.
2
Requirement for Candida albicans Sun41 in biofilm formation and virulence.
Eukaryot Cell. 2007 Nov;6(11):2046-55. doi: 10.1128/EC.00314-07. Epub 2007 Sep 14.
3
A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions.
Microbiol Mol Biol Rev. 2007 Jun;71(2):282-94. doi: 10.1128/MMBR.00037-06.
4
Transcriptional rewiring of fungal galactose-metabolism circuitry.
Curr Biol. 2007 Jun 19;17(12):1007-13. doi: 10.1016/j.cub.2007.05.017. Epub 2007 May 31.
5
Regulation of glucose partitioning by PAS kinase and Ugp1 phosphorylation.
Mol Cell. 2007 May 25;26(4):491-9. doi: 10.1016/j.molcel.2007.03.025.
6
The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans.
Mol Microbiol. 2007 Mar;63(5):1399-413. doi: 10.1111/j.1365-2958.2007.05588.x.
8
Cell wall assembly in Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 2006 Jun;70(2):317-43. doi: 10.1128/MMBR.00038-05.
9
A drug-sensitive genetic network masks fungi from the immune system.
PLoS Pathog. 2006 Apr;2(4):e35. doi: 10.1371/journal.ppat.0020035. Epub 2006 Apr 28.
10
Control of the C. albicans cell wall damage response by transcriptional regulator Cas5.
PLoS Pathog. 2006 Mar;2(3):e21. doi: 10.1371/journal.ppat.0020021. Epub 2006 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验