Meade Adam W, Johnson Emily C, Braddy Phillip W
Department of Psychology, North Carolina State University, Raleigh, NC 27695-7650, USA.
J Appl Psychol. 2008 May;93(3):568-92. doi: 10.1037/0021-9010.93.3.568.
Confirmatory factor analytic tests of measurement invariance (MI) based on the chi-square statistic are known to be highly sensitive to sample size. For this reason, G. W. Cheung and R. B. Rensvold (2002) recommended using alternative fit indices (AFIs) in MI investigations. In this article, the authors investigated the performance of AFIs with simulated data known to not be invariant. The results indicate that AFIs are much less sensitive to sample size and are more sensitive to a lack of invariance than chi-square-based tests of MI. The authors suggest reporting differences in comparative fit index (CFI) and R. P. McDonald's (1989) noncentrality index (NCI) to evaluate whether MI exists. Although a general value of change in CFI (.002) seemed to perform well in the analyses, condition specific change in McDonald's NCI values exhibited better performance than a single change in McDonald's NCI value. Tables of these values are provided as are recommendations for best practices in MI testing.
基于卡方统计量的测量不变性(MI)验证性因素分析测试已知对样本量高度敏感。因此,G. W. 张和R. B. 伦斯沃尔德(2002年)建议在MI调查中使用替代拟合指数(AFI)。在本文中,作者用已知不具有不变性的模拟数据研究了AFI的性能。结果表明,AFI对样本量的敏感性要低得多,并且比基于卡方的MI测试对缺乏不变性更敏感。作者建议报告比较拟合指数(CFI)和R. P. 麦克唐纳(1989年)非中心性指数(NCI)的差异,以评估MI是否存在。虽然CFI的一般变化值(.002)在分析中似乎表现良好,但麦克唐纳NCI值的条件特定变化比麦克唐纳NCI值的单一变化表现更好。提供了这些值的表格以及MI测试最佳实践的建议。