Suppr超能文献

转化生长因子-β受体阻断增强了已建立实体癌过继性T细胞疗法的有效性。

Transforming growth factor-beta receptor blockade augments the effectiveness of adoptive T-cell therapy of established solid cancers.

作者信息

Wallace Africa, Kapoor Veena, Sun Jing, Mrass Paul, Weninger Wolfgang, Heitjan Daniel F, June Carl, Kaiser Larry R, Ling Leona E, Albelda Steven M

机构信息

Thoracic Oncology Research Laboratory, University of Pennsylvania, Pennsylvania, USA.

出版信息

Clin Cancer Res. 2008 Jun 15;14(12):3966-74. doi: 10.1158/1078-0432.CCR-08-0356.

Abstract

PURPOSE

Adoptive cellular immunotherapy is a promising approach to eradicate established tumors. However, a significant hurdle in the success of cellular immunotherapy involves recently identified mechanisms of immune suppression on cytotoxic T cells at the effector phase. Transforming growth factor-beta (TGF-beta) is one of the most important of these immunosuppressive factors because it affects both T-cell and macrophage functions. We thus hypothesized that systemic blockade of TGF-beta signaling combined with adoptive T-cell transfer would enhance the effectiveness of the therapy.

EXPERIMENTAL DESIGN

Flank tumors were generated in mice using the chicken ovalbumin-expressing thymoma cell line, EG7. Splenocytes from transgenic OT-1 mice (whose CD8 T cells recognize an immunodominant peptide in chicken ovalbumin) were activated in vitro and adoptively transferred into mice bearing large tumors in the presence or absence of an orally available TGF-beta receptor-I kinase blocker (SM16).

RESULTS

We observed markedly smaller tumors in the group receiving the combination of SM16 chow and adoptive transfer. Additional investigation revealed that TGF-beta receptor blockade increased the persistence of adoptively transferred T cells in the spleen and lymph nodes, increased numbers of adoptively transferred T cells within tumors, increased activation of these infiltrating T cells, and altered the tumor microenvironment with a significant increase in tumor necrosis factor-alpha and decrease in arginase mRNA expression.

CONCLUSIONS

We found that systemic blockade of TGF-beta receptor activity augmented the antitumor activity of adoptively transferred T cells and may thus be a useful adjunct in future clinical trials.

摘要

目的

过继性细胞免疫疗法是一种有前景的根除已形成肿瘤的方法。然而,细胞免疫疗法成功的一个重大障碍涉及到最近发现的效应阶段细胞毒性T细胞免疫抑制机制。转化生长因子-β(TGF-β)是这些免疫抑制因子中最重要的一种,因为它影响T细胞和巨噬细胞的功能。因此,我们假设TGF-β信号通路的全身阻断联合过继性T细胞转移会增强治疗效果。

实验设计

使用表达鸡卵清蛋白的胸腺瘤细胞系EG7在小鼠侧腹生成肿瘤。来自转基因OT-1小鼠(其CD8 T细胞识别鸡卵清蛋白中的一个免疫显性肽)的脾细胞在体外被激活,并在存在或不存在口服可用的TGF-β受体-I激酶阻滞剂(SM16)的情况下过继性转移到患有大肿瘤的小鼠体内。

结果

我们观察到接受SM16饲料和过继性转移联合治疗的组中的肿瘤明显更小。进一步研究发现,TGF-β受体阻断增加了过继性转移的T细胞在脾脏和淋巴结中的持久性,增加了肿瘤内过继性转移的T细胞数量,增加了这些浸润性T细胞的活化,并改变了肿瘤微环境,肿瘤坏死因子-α显著增加,精氨酸酶mRNA表达降低。

结论

我们发现TGF-β受体活性的全身阻断增强了过继性转移T细胞的抗肿瘤活性,因此可能是未来临床试验中一种有用的辅助手段。

相似文献

2
Systemic blockade of transforming growth factor-beta signaling augments the efficacy of immunogene therapy.
Cancer Res. 2008 Dec 15;68(24):10247-56. doi: 10.1158/0008-5472.CAN-08-1494.
4
Reinforcement of cancer immunotherapy by adoptive transfer of cblb-deficient CD8+ T cells combined with a DC vaccine.
Immunol Cell Biol. 2012 Jan;90(1):130-4. doi: 10.1038/icb.2011.11. Epub 2011 Mar 8.
8
Potentiating CAR-T cell function in the immunosuppressive tumor microenvironment by inverting the TGF-β signal.
Mol Ther. 2025 Feb 5;33(2):688-702. doi: 10.1016/j.ymthe.2024.12.014. Epub 2024 Dec 13.

引用本文的文献

1
Molecular understanding and clinical outcomes of CAR T cell therapy in the treatment of urological tumors.
Cell Death Dis. 2024 May 24;15(5):359. doi: 10.1038/s41419-024-06734-2.
2
Chimeric antigen receptor T cells in the treatment of osteosarcoma (Review).
Int J Oncol. 2024 Apr;64(4). doi: 10.3892/ijo.2024.5628. Epub 2024 Feb 23.
3
Recent advances of bioresponsive polymeric nanomedicine for cancer therapy.
Nano Res. 2023;16(2):2660-2671. doi: 10.1007/s12274-022-5002-2. Epub 2022 Nov 15.
4
Advances and Hurdles in CAR T Cell Immune Therapy for Solid Tumors.
Cancers (Basel). 2022 Oct 18;14(20):5108. doi: 10.3390/cancers14205108.
5
Biomimetic and Materials-Potentiated Cell Engineering for Cancer Immunotherapy.
Pharmaceutics. 2022 Mar 29;14(4):734. doi: 10.3390/pharmaceutics14040734.
6
Emerging Novel Combined CAR-T Cell Therapies.
Cancers (Basel). 2022 Mar 9;14(6):1403. doi: 10.3390/cancers14061403.
7
CAR-NK cells for cancer immunotherapy: from bench to bedside.
Biomark Res. 2022 Mar 18;10(1):12. doi: 10.1186/s40364-022-00364-6.
8
Reprogramming Immune Cells for Enhanced Cancer Immunotherapy: Targets and Strategies.
Front Immunol. 2021 Apr 21;12:609762. doi: 10.3389/fimmu.2021.609762. eCollection 2021.
9
DNA scaffolds enable efficient and tunable functionalization of biomaterials for immune cell modulation.
Nat Nanotechnol. 2021 Feb;16(2):214-223. doi: 10.1038/s41565-020-00813-z. Epub 2020 Dec 14.
10
Innovative CAR-T Cell Therapy for Solid Tumor; Current Duel between CAR-T Spear and Tumor Shield.
Cancers (Basel). 2020 Jul 28;12(8):2087. doi: 10.3390/cancers12082087.

本文引用的文献

1
SM16, an orally active TGF-beta type I receptor inhibitor prevents myofibroblast induction and vascular fibrosis in the rat carotid injury model.
Arterioscler Thromb Vasc Biol. 2008 Apr;28(4):665-71. doi: 10.1161/ATVBAHA.107.158030. Epub 2008 Jan 17.
2
Transforming growth factor-beta and the immune response to malignant disease.
Clin Cancer Res. 2007 Nov 1;13(21):6247-51. doi: 10.1158/1078-0432.CCR-07-1654.
4
In vivo imaging of T cell delivery to tumors after adoptive transfer therapy.
Proc Natl Acad Sci U S A. 2007 Jul 24;104(30):12457-61. doi: 10.1073/pnas.0704460104. Epub 2007 Jul 18.
5
Adoptive T cell therapy for cancer in the clinic.
J Clin Invest. 2007 Jun;117(6):1466-76. doi: 10.1172/JCI32446.
9
Improving T cell therapy for cancer.
Annu Rev Immunol. 2007;25:243-65. doi: 10.1146/annurev.immunol.25.022106.141527.
10
Random migration precedes stable target cell interactions of tumor-infiltrating T cells.
J Exp Med. 2006 Nov 27;203(12):2749-61. doi: 10.1084/jem.20060710. Epub 2006 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验