Suppr超能文献

使用多个数据集来了解严重道路交通伤亡情况的趋势。

Using multiple datasets to understand trends in serious road traffic casualties.

作者信息

Lyons Ronan A, Ward Heather, Brunt Huw, Macey Steven, Thoreau Roselle, Bodger O G, Woodford Maralyn

机构信息

Centre for Health Information, Research and Evaluation (CHIRAL), School of Medicine, Swansea University, Singleton Park, Swansea, United Kingdom.

出版信息

Accid Anal Prev. 2008 Jul;40(4):1406-10. doi: 10.1016/j.aap.2008.03.011. Epub 2008 Apr 15.

Abstract

Accurate information on the incidence of serious road traffic casualties is needed to plan and evaluate prevention strategies. Traditionally police reported collisions are the only data used. This study investigate the extent to which understanding of trends in serious road traffic injuries is aided by the use of multiple datasets. Health and police datasets covering all or part of Great Britain from 1996-2003 were analysed. There was a significantly decreasing trend in police reported serious casualties but not in the other datasets. Multiple data sources provide a more complete picture of road traffic casualty trends than any single dataset. Increasing availability of electronic health data with developments in anonymised data linkage should provide a better platform for monitoring trends in serious road traffic casualties.

摘要

为了规划和评估预防策略,需要有关严重道路交通伤亡发生率的准确信息。传统上,警方报告的碰撞事故是唯一使用的数据。本研究调查了使用多个数据集在多大程度上有助于理解严重道路交通伤害的趋势。分析了涵盖1996年至2003年大不列颠全部或部分地区的健康和警方数据集。警方报告的严重伤亡人数呈显著下降趋势,但其他数据集中并非如此。多个数据源比任何单个数据集能更全面地呈现道路交通伤亡趋势。随着匿名数据链接技术的发展,电子健康数据可用性的提高应为监测严重道路交通伤亡趋势提供更好的平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验