Suppr超能文献

基于空间模式匹配(SPM)的计数归一化能够很好地区分轻度阿尔茨海默病及遗忘型轻度认知障碍与健康衰老。

SPM-based count normalization provides excellent discrimination of mild Alzheimer's disease and amnestic mild cognitive impairment from healthy aging.

作者信息

Yakushev Igor, Hammers Alexander, Fellgiebel Andreas, Schmidtmann Irene, Scheurich Armin, Buchholz Hans-Georg, Peters Jürgen, Bartenstein Peter, Lieb Klaus, Schreckenberger Mathias

机构信息

Department of Nuclear Medicine, University of Mainz, Mainz, Germany.

出版信息

Neuroimage. 2009 Jan 1;44(1):43-50. doi: 10.1016/j.neuroimage.2008.07.015. Epub 2008 Jul 22.

Abstract

Statistical comparisons of [(18)F]FDG PET scans between healthy subjects and patients with Alzheimer's disease (AD) or amnestic mild cognitive impairment (aMCI) using Statistical Parametric Mapping (SPM) usually require normalization of regional tracer uptake via ROIs defined using additional software. Here, we validate a simple SPM-based method for count normalization. FDG PET scans of 21 mild, 15 very mild AD, 11 aMCI patients and 15 age-matched controls were analyzed. First, we obtained relative increases in the whole patient sample compared to controls (i.e. areas relatively preserved in patients) with proportional scaling to the cerebral global mean (CGM). Next, average absolute counts within the cluster with the highest t-value were extracted. Statistical comparisons of controls versus three patients groups were then performed using count normalization to CGM, sensorimotor cortex (SMC) as standard, and to the cluster-derived counts. Compared to controls, relative metabolism in aMCI patients was reduced by 15%, 20%, and 23% after normalization to CGM, SMC, and cluster-derived counts, respectively, and 11%, 21%, and 25% in mild AD patients. Logistic regression analyses based on normalized values extracted from AD-typical regions showed that the metabolic values obtained using CGM, SMC, and cluster normalization correctly classified 81%, 89% and 92% of aMCI and controls; classification accuracies for AD groups (very mild and mild) were 91%, 97%, and 100%. The proposed algorithm of fully SPM-based count normalization allows for a substantial increase of statistical power in detecting very early AD-associated hypometabolism, and very high accuracy in discriminating mild AD and aMCI from healthy aging.

摘要

使用统计参数映射(SPM)对健康受试者与阿尔茨海默病(AD)患者或遗忘型轻度认知障碍(aMCI)患者的[¹⁸F]FDG PET扫描进行统计比较时,通常需要通过使用其他软件定义的感兴趣区(ROI)对区域示踪剂摄取进行标准化。在此,我们验证了一种基于SPM的简单计数标准化方法。分析了21例轻度、15例极轻度AD、11例aMCI患者以及15例年龄匹配对照的FDG PET扫描。首先,我们获得了与对照相比整个患者样本中的相对增加量(即患者中相对保留的区域),并按比例缩放到脑全局均值(CGM)。接下来,提取t值最高的簇内的平均绝对计数。然后使用对CGM、以感觉运动皮层(SMC)为标准以及对簇衍生计数的计数标准化,对对照与三个患者组进行统计比较。与对照相比,aMCI患者在以CGM、SMC和簇衍生计数进行标准化后,相对代谢分别降低了15%、20%和23%,轻度AD患者分别降低了11%、21%和25%。基于从AD典型区域提取的标准化值进行的逻辑回归分析表明,使用CGM、SMC和簇标准化获得的代谢值正确分类了81%、89%和92%的aMCI与对照;AD组(极轻度和轻度)的分类准确率分别为91%、97%和100%。所提出的基于完全SPM的计数标准化算法在检测极早期AD相关的代谢减低方面可大幅提高统计功效,并且在区分轻度AD和aMCI与健康衰老方面具有非常高的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验