Suppr超能文献

一种共表达鼠疫耶尔森菌F1-V融合蛋白的鼻腔白细胞介素-12 DNA疫苗可提供针对肺鼠疫的保护。

A nasal interleukin-12 DNA vaccine coexpressing Yersinia pestis F1-V fusion protein confers protection against pneumonic plague.

作者信息

Yamanaka Hitoki, Hoyt Teri, Yang Xinghong, Golden Sarah, Bosio Catharine M, Crist Kathryn, Becker Todd, Maddaloni Massimo, Pascual David W

机构信息

Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717-3610, USA.

出版信息

Infect Immun. 2008 Oct;76(10):4564-73. doi: 10.1128/IAI.00581-08. Epub 2008 Aug 11.

Abstract

Previous studies have shown that mucosal application of interleukin-12 (IL-12) can stimulate elevated secretory immunoglobulin A (IgA) responses. Since possible exposure to plague is via Yersinia pestis-laden aerosols that results in pneumonic plague, arming both the mucosal and systemic immune systems may offer an added benefit for protective immunity. Two bicistronic plasmids were constructed that encoded the protective plague epitopes, capsular antigen (F1-Ag) and virulence antigen (V-Ag) as a F1-V fusion protein but differed in the amounts of IL-12 produced. When applied nasally, serum IgG and mucosal IgA anti-F1-Ag and anti-V-Ag titers were detectable beginning at week 6 after three weekly doses, and recombinant F1-Ag boosts were required to elevate the F1-Ag-specific antibody (Ab) titers. Following pneumonic challenge, the best efficacy was obtained in mice primed with IL-12(Low)/F1-V vaccine with 80% survival compared to mice immunized with IL-12(Low)/F1, IL-12(Low)/V, or IL-12(Low) vector DNA vaccines. Improved expression of IL-12 resulted in lost efficacy when using the IL-12(High)/F1-V DNA vaccine. Despite differences in the amount of IL-12 produced by the two F1-V DNA vaccines, Ab responses and Th cell responses to F1- and V-Ags were similar. These results show that IL-12 can be used as a molecular adjuvant to enhance protective immunity against pneumonic plague, but in a dose-dependent fashion.

摘要

先前的研究表明,黏膜应用白细胞介素-12(IL-12)可刺激分泌型免疫球蛋白A(IgA)反应升高。由于可能通过携带鼠疫耶尔森菌的气溶胶接触鼠疫,从而导致肺鼠疫,增强黏膜和全身免疫系统可能为保护性免疫带来额外益处。构建了两种双顺反子质粒,它们编码保护性鼠疫抗原表位、荚膜抗原(F1-Ag)和毒力抗原(V-Ag)作为F1-V融合蛋白,但产生的IL-12量不同。经鼻腔应用后,在每周一次共三次给药后的第6周开始可检测到血清IgG以及黏膜IgA抗F1-Ag和抗V-Ag滴度,并且需要重组F1-Ag加强免疫来提高F1-Ag特异性抗体(Ab)滴度。在肺鼠疫攻击后,用IL-12(低)/F1-V疫苗免疫的小鼠获得了最佳疗效,存活率为80%,相比之下,用IL-12(低)/F1、IL-12(低)/V或IL-12(低)载体DNA疫苗免疫的小鼠存活率较低。当使用IL-12(高)/F1-V DNA疫苗时,IL-12表达的改善导致疗效丧失。尽管两种F1-V DNA疫苗产生的IL-12量不同,但对F1-和V-Ag的Ab反应和Th细胞反应相似。这些结果表明,IL-12可作为分子佐剂来增强针对肺鼠疫的保护性免疫,但呈剂量依赖性。

相似文献

2
A parenteral DNA vaccine protects against pneumonic plague.
Vaccine. 2010 Apr 19;28(18):3219-30. doi: 10.1016/j.vaccine.2010.02.022. Epub 2010 Mar 1.
3
An IL-12 DNA vaccine co-expressing Yersinia pestis antigens protects against pneumonic plague.
Vaccine. 2009 Jan 1;27(1):80-7. doi: 10.1016/j.vaccine.2008.10.021. Epub 2008 Oct 26.
5
Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts.
Infect Immun. 2008 Aug;76(8):3640-50. doi: 10.1128/IAI.00050-08. Epub 2008 May 27.
6
Intranasal delivery of a protein subunit vaccine using a Tobacco Mosaic Virus platform protects against pneumonic plague.
Vaccine. 2016 Nov 11;34(47):5768-5776. doi: 10.1016/j.vaccine.2016.09.063. Epub 2016 Oct 13.
8
Cell-mediated immune response and Th/Th cytokine profile of B-T constructs of F1 and V antigen of Yersinia pestis.
Scand J Immunol. 2010 Mar;71(3):186-98. doi: 10.1111/j.1365-3083.2009.02365.x.
9
Delivery of antigens via outer membrane vesicles offered improved protection against plague.
mSphere. 2024 Sep 25;9(9):e0033024. doi: 10.1128/msphere.00330-24. Epub 2024 Aug 19.

引用本文的文献

1
Genetic adjuvants: A paradigm shift in vaccine development and immune modulation.
Mol Ther Nucleic Acids. 2025 Apr 8;36(2):102536. doi: 10.1016/j.omtn.2025.102536. eCollection 2025 Jun 10.
2
Recent advances in respiratory immunization: A focus on COVID-19 vaccines.
J Control Release. 2023 Mar;355:655-674. doi: 10.1016/j.jconrel.2023.02.011. Epub 2023 Feb 17.
4
Plague Prevention and Therapy: Perspectives on Current and Future Strategies.
Biomedicines. 2021 Oct 9;9(10):1421. doi: 10.3390/biomedicines9101421.
5
Intranasal immunization with dry powder vaccines.
Eur J Pharm Biopharm. 2018 Jan;122:167-175. doi: 10.1016/j.ejpb.2017.11.001. Epub 2017 Nov 6.
6
Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity.
Hum Vaccin Immunother. 2017 Dec 2;13(12):2837-2848. doi: 10.1080/21645515.2017.1330236. Epub 2017 Jun 12.
7
Plague Vaccine Development: Current Research and Future Trends.
Front Immunol. 2016 Dec 14;7:602. doi: 10.3389/fimmu.2016.00602. eCollection 2016.
8
Plague Vaccines: Status and Future.
Adv Exp Med Biol. 2016;918:313-360. doi: 10.1007/978-94-024-0890-4_12.
9
Molecular mechanisms for enhanced DNA vaccine immunogenicity.
Expert Rev Vaccines. 2016;15(3):313-29. doi: 10.1586/14760584.2016.1124762. Epub 2015 Dec 28.
10
Intranasal co-delivery of IL-6 gene enhances the immunogenicity of anti-caries DNA vaccine.
Acta Pharmacol Sin. 2014 May;35(5):592-8. doi: 10.1038/aps.2013.184.

本文引用的文献

1
Differential regulation of antigen-specific CD8+ T cell responses by IL-12p40 in a dose-dependent manner.
J Immunol. 2008 Jun 1;180(11):7167-74. doi: 10.4049/jimmunol.180.11.7167.
5
Mucosal vaccine targeting improves onset of mucosal and systemic immunity to botulinum neurotoxin A.
J Immunol. 2006 Oct 15;177(8):5524-32. doi: 10.4049/jimmunol.177.8.5524.
6
Plague: disease, management, and recognition of act of terrorism.
Infect Dis Clin North Am. 2006 Jun;20(2):273-87, viii. doi: 10.1016/j.idc.2006.02.004.
9
Cell-mediated protection against pulmonary Yersinia pestis infection.
Infect Immun. 2005 Nov;73(11):7304-10. doi: 10.1128/IAI.73.11.7304-7310.2005.
10
Selection of protective epitopes for Brucella melitensis by DNA vaccination.
Infect Immun. 2005 Nov;73(11):7297-303. doi: 10.1128/IAI.73.11.7297-7303.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验