Suppr超能文献

酵母中类似溶酶体的液泡:终点与十字路口。

The yeast lysosome-like vacuole: endpoint and crossroads.

作者信息

Li Sheena Claire, Kane Patricia M

机构信息

Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.

出版信息

Biochim Biophys Acta. 2009 Apr;1793(4):650-63. doi: 10.1016/j.bbamcr.2008.08.003. Epub 2008 Aug 13.

Abstract

Fungal vacuoles are acidic organelles with degradative and storage capabilities that have many similarities to mammalian lysosomes and plant vacuoles. In the past several years, well-developed genetic, genomic, biochemical and cell biological tools in S. cerevisiae have provided fresh insights into vacuolar protein sorting, organelle acidification, ion homeostasis, autophagy, and stress-related functions of the vacuole, and these insights have often found parallels in mammalian lysosomes. This review provides a broad overview of the defining features and functions of S. cerevisiae vacuoles and compares these features to mammalian lysosomes. Recent research challenges the traditional view of vacuoles and lysosomes as simply the terminal compartment of biosynthetic and endocytic pathways (i.e. the "garbage dump" of the cell), and suggests instead that these compartments are unexpectedly dynamic and highly regulated.

摘要

真菌液泡是具有降解和储存能力的酸性细胞器,与哺乳动物溶酶体和植物液泡有许多相似之处。在过去几年中,酿酒酵母中完善的遗传、基因组、生化和细胞生物学工具为液泡蛋白分选、细胞器酸化、离子稳态、自噬以及液泡的应激相关功能提供了新的见解,而且这些见解常常能在哺乳动物溶酶体中找到对应。本综述广泛概述了酿酒酵母液泡的定义特征和功能,并将这些特征与哺乳动物溶酶体进行了比较。最近的研究对液泡和溶酶体仅仅是生物合成和内吞途径的终末区室(即细胞的“垃圾场”)这一传统观点提出了挑战,相反,表明这些区室出人意料地具有动态性且受到高度调控。

相似文献

1
The yeast lysosome-like vacuole: endpoint and crossroads.
Biochim Biophys Acta. 2009 Apr;1793(4):650-63. doi: 10.1016/j.bbamcr.2008.08.003. Epub 2008 Aug 13.
2
The Fab1/PIKfyve phosphoinositide phosphate kinase is not necessary to maintain the pH of lysosomes and of the yeast vacuole.
J Biol Chem. 2015 Apr 10;290(15):9919-28. doi: 10.1074/jbc.M114.613984. Epub 2015 Feb 20.
3
Yeast vacuoles: more than a model lysosome.
Trends Cell Biol. 2010 Oct;20(10):580-5. doi: 10.1016/j.tcb.2010.06.010. Epub 2010 Aug 3.
4
The vacuolar shapes of ageing: From function to morphology.
Biochim Biophys Acta Mol Cell Res. 2019 May;1866(5):957-970. doi: 10.1016/j.bbamcr.2019.02.011. Epub 2019 Feb 21.
5
Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole.
Microbiol Mol Biol Rev. 1998 Mar;62(1):230-47. doi: 10.1128/MMBR.62.1.230-247.1998.
6
A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways.
J Cell Biol. 2022 Apr 4;221(4). doi: 10.1083/jcb.202107148. Epub 2022 Feb 17.
8
Phagophore-lysosome/vacuole fusion in mutant yeast and mammalian cells.
Autophagy. 2023 Sep;19(9):2595-2600. doi: 10.1080/15548627.2023.2205272. Epub 2023 Apr 28.
10
Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome.
J Cell Biol. 1997 Dec 29;139(7):1687-95. doi: 10.1083/jcb.139.7.1687.

引用本文的文献

1
A plasmid module for PCR-based gene modification for the accurate measurement of vacuolar delivery of specific proteins in yeast .
Autophagy Rep. 2025 May 31;4(1):2511724. doi: 10.1080/27694127.2025.2511724. eCollection 2025.
2
Vacuolar Proteases of from Clades III and IV and Their Relationship with Autophagy.
J Fungi (Basel). 2025 May 18;11(5):388. doi: 10.3390/jof11050388.
3
Pex30-dependent membrane contact sites maintain ER lipid homeostasis.
J Cell Biol. 2025 Jul 7;224(7). doi: 10.1083/jcb.202409039. Epub 2025 May 23.
5
Anticancer drugs targeting topoisomerase II for antifungal treatment.
Sci Rep. 2025 Mar 18;15(1):9311. doi: 10.1038/s41598-025-93863-z.
6
Exploring the differential localization of protein kinase A isoforms in .
mSphere. 2025 Mar 25;10(3):e0103724. doi: 10.1128/msphere.01037-24. Epub 2025 Feb 25.
7
Analyses of hyphal diversity in Trichosporonales yeasts based on fluorescent microscopic observations.
Microbiol Spectr. 2025 Apr;13(4):e0321024. doi: 10.1128/spectrum.03210-24. Epub 2025 Feb 25.
8
Use of Bio-Layer Interferometry (BLI) to Measure Binding Affinities of SNAREs and Phosphoinositides.
Methods Mol Biol. 2025;2887:103-117. doi: 10.1007/978-1-0716-4314-3_7.
10
Structural and biochemical analysis of ligand binding in yeast Niemann-Pick type C1-related protein.
Life Sci Alliance. 2024 Oct 25;8(1). doi: 10.26508/lsa.202402990. Print 2025 Jan.

本文引用的文献

1
Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast.
J Biol Chem. 2008 Jul 18;283(29):20309-19. doi: 10.1074/jbc.M710470200. Epub 2008 May 23.
2
Different ubiquitin signals act at the Golgi and plasma membrane to direct GAP1 trafficking.
Mol Biol Cell. 2008 Jul;19(7):2962-72. doi: 10.1091/mbc.e07-06-0627. Epub 2008 Apr 23.
3
HOPS proofreads the trans-SNARE complex for yeast vacuole fusion.
Mol Biol Cell. 2008 Jun;19(6):2500-8. doi: 10.1091/mbc.e08-01-0077. Epub 2008 Apr 2.
4
Autophagy fights disease through cellular self-digestion.
Nature. 2008 Feb 28;451(7182):1069-75. doi: 10.1038/nature06639.
5
How Saccharomyces responds to nutrients.
Annu Rev Genet. 2008;42:27-81. doi: 10.1146/annurev.genet.41.110306.130206.
6
Autophagy: process and function.
Genes Dev. 2007 Nov 15;21(22):2861-73. doi: 10.1101/gad.1599207.
7
Yeast vacuole fusion: a model system for eukaryotic endomembrane dynamics.
Autophagy. 2008 Jan;4(1):5-19. doi: 10.4161/auto.5054. Epub 2007 Sep 12.
8
Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology.
Nat Rev Mol Cell Biol. 2007 Nov;8(11):917-29. doi: 10.1038/nrm2272.
9
Alternative modes of organellar segregation during sporulation in Saccharomyces cerevisiae.
Eukaryot Cell. 2007 Nov;6(11):2009-17. doi: 10.1128/EC.00238-07. Epub 2007 Sep 28.
10
Compensatory membrane expression of the V-ATPase B2 subunit isoform in renal medullary intercalated cells of B1-deficient mice.
Am J Physiol Renal Physiol. 2007 Dec;293(6):F1915-26. doi: 10.1152/ajprenal.00160.2007. Epub 2007 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验