Suppr超能文献

严格的交配型调控的营养缺陷型增加了与酿酒酵母突变体阵列进行系统遗传相互作用筛选的准确性。

Stringent mating-type-regulated auxotrophy increases the accuracy of systematic genetic interaction screens with Saccharomyces cerevisiae mutant arrays.

作者信息

Singh Indira, Pass Rebecca, Togay Sine Ozmen, Rodgers John W, Hartman John L

机构信息

Department of Genetics, University of Alabama, Birmingham, Alabama 35294, USA.

出版信息

Genetics. 2009 Jan;181(1):289-300. doi: 10.1534/genetics.108.092981. Epub 2008 Oct 28.

Abstract

A genomic collection of haploid Saccharomyces cerevisiae deletion strains provides a unique resource for systematic analysis of gene interactions. Double-mutant haploid strains can be constructed by the synthetic genetic array (SGA) method, wherein a query mutation is introduced by mating to mutant arrays, selection of diploid double mutants, induction of meiosis, and selection of recombinant haploid double-mutant progeny. The mechanism of haploid selection is mating-type-regulated auxotrophy (MRA), by which prototrophy is restricted to a particular haploid genotype generated only as a result of meiosis. MRA escape leads to false-negative genetic interaction results because postmeiotic haploids that are supposed to be under negative selection instead proliferate and mate, forming diploids that are heterozygous at interacting loci, masking phenotypes that would be observed in a pure haploid double-mutant culture. This work identified factors that reduce MRA escape, including insertion of terminator and repressor sequences upstream of the MRA cassette, deletion of silent mating-type loci, and utilization of alpha-type instead of a-type MRA. Modifications engineered to reduce haploid MRA escape reduced false negative results in SGA-type analysis, resulting in >95% sensitivity for detecting gene-gene interactions.

摘要

单倍体酿酒酵母缺失菌株的基因组文库为基因相互作用的系统分析提供了独特的资源。双突变单倍体菌株可通过合成遗传阵列(SGA)方法构建,其中通过与突变阵列杂交引入查询突变,选择二倍体双突变体,诱导减数分裂,并选择重组单倍体双突变后代。单倍体选择的机制是交配型调节的营养缺陷型(MRA),通过这种机制,原养型被限制在仅由减数分裂产生的特定单倍体基因型中。MRA逃逸会导致假阴性的遗传相互作用结果,因为本应处于负选择下的减数分裂后单倍体反而增殖并交配,形成在相互作用位点杂合的二倍体,掩盖了在纯合单倍体双突变培养物中会观察到的表型。这项工作确定了减少MRA逃逸的因素,包括在MRA盒上游插入终止子和阻遏序列、删除沉默交配型位点以及使用α型而非a型MRA。为减少单倍体MRA逃逸而设计的修饰减少了SGA型分析中的假阴性结果,检测基因-基因相互作用的灵敏度>95%。

相似文献

2
Antisense transcription controls cell fate in Saccharomyces cerevisiae.
Cell. 2006 Nov 17;127(4):735-45. doi: 10.1016/j.cell.2006.09.038.
5
Single-gene deletions that restore mating competence to diploid yeast.
FEMS Yeast Res. 2008 Mar;8(2):276-86. doi: 10.1111/j.1567-1364.2007.00322.x. Epub 2007 Nov 11.
6
Haploidization in Saccharomyces cerevisiae induced by a deficiency in homologous recombination.
Genetics. 2012 May;191(1):279-84. doi: 10.1534/genetics.111.138180. Epub 2012 Feb 23.
7
Regulation of mating and meiosis in yeast by the mating-type region.
Genetics. 1976 Feb;82(2):187-206. doi: 10.1093/genetics/82.2.187.
10
Genetic engineering to alter carbon flux for various higher alcohol productions by Saccharomyces cerevisiae for Chinese Baijiu fermentation.
Appl Microbiol Biotechnol. 2018 Feb;102(4):1783-1795. doi: 10.1007/s00253-017-8715-5. Epub 2018 Jan 5.

引用本文的文献

2
Genetic interactions derived from high-throughput phenotyping of 6589 yeast cell cycle mutants.
NPJ Syst Biol Appl. 2020 May 6;6(1):11. doi: 10.1038/s41540-020-0134-z.
4
Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect.
PLoS Biol. 2016 May 11;14(5):e1002462. doi: 10.1371/journal.pbio.1002462. eCollection 2016 May.
6
Phenomic assessment of genetic buffering by kinetic analysis of cell arrays.
Methods Mol Biol. 2014;1205:187-208. doi: 10.1007/978-1-4939-1363-3_12.
8
The SWI/SNF chromatin remodeling complex influences transcription by RNA polymerase I in Saccharomyces cerevisiae.
PLoS One. 2013;8(2):e56793. doi: 10.1371/journal.pone.0056793. Epub 2013 Feb 20.
10
Bioinformatic identification of genes suppressing genome instability.
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):E3251-9. doi: 10.1073/pnas.1216733109. Epub 2012 Nov 5.

本文引用的文献

1
Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast.
Science. 2008 Oct 17;322(5900):405-10. doi: 10.1126/science.1162609. Epub 2008 Sep 25.
2
A simple method for isolating disomic strains of Saccharomyces cerevisiae.
Yeast. 2008 May;25(5):321-6. doi: 10.1002/yea.1590.
3
Defining genetic interaction.
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3461-6. doi: 10.1073/pnas.0712255105. Epub 2008 Feb 27.
4
Buffering of deoxyribonucleotide pool homeostasis by threonine metabolism.
Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11700-5. doi: 10.1073/pnas.0705212104. Epub 2007 Jul 2.
6
Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions.
Nat Genet. 2007 Feb;39(2):199-206. doi: 10.1038/ng1948. Epub 2007 Jan 7.
8
Eliminating gene conversion improves high-throughput genetics in Saccharomyces cerevisiae.
Genetics. 2006 Jan;172(1):709-11. doi: 10.1534/genetics.105.047662. Epub 2005 Sep 12.
9
Synthetic genetic array analysis in Saccharomyces cerevisiae.
Methods Mol Biol. 2006;313:171-92. doi: 10.1385/1-59259-958-3:171.
10
Systematic quantification of gene interactions by phenotypic array analysis.
Genome Biol. 2004;5(7):R49. doi: 10.1186/gb-2004-5-7-r49. Epub 2004 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验