Suppr超能文献

基于心音图(PCG)信号小波变换的心脏瓣膜疾病神经网络分类的心音再现

Heart sound reproduction based on neural network classification of cardiac valve disorders using wavelet transforms of PCG signals.

作者信息

Babaei Sepideh, Geranmayeh Amir

机构信息

Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 15914 Tehran, Iran.

出版信息

Comput Biol Med. 2009 Jan;39(1):8-15. doi: 10.1016/j.compbiomed.2008.10.004. Epub 2008 Dec 9.

Abstract

Cardiac auscultatory proficiency of physicians is crucial for accurate diagnosis of many heart diseases. Plenty of diverse abnormal heart sounds with identical main specifications and different details representing the ambient noise are indispensably needed to train, assess and improve the skills of medical students in recognizing and distinguishing the primary symptoms of the cardiac diseases. This paper proposes a versatile multiresolution wavelet-based algorithm to first extract the main statistical characteristics of three well-known heart valve disorders, namely the aortic insufficiency, the aortic stenosis, and the pulmonary stenosis sounds as well as the normal ones. An artificial neural network (ANN) and statistical classifier are then applied alternatively to choose proper exclusive features. Both classification approaches suggest using Daubechies wavelet filter with four vanishing moments within five decomposition levels for the most prominent distinction of the diseases. The proffered ANN is a multilayer perceptron structure with one hidden layer trained by a back-propagation algorithm (MLP-BP) and it elevates the percentage classification accuracy to 94.42. Ultimately, the corresponding main features are manipulated in wavelet domain so as to sequentially regenerate the individual counterparts of the underlying signals.

摘要

医生的心脏听诊能力对于准确诊断多种心脏疾病至关重要。为了训练、评估和提高医学生识别和区分心脏病主要症状的技能,必不可少地需要大量具有相同主要特征但细节不同的各种异常心音,这些心音代表了环境噪声。本文提出了一种基于多分辨率小波的通用算法,首先提取三种著名心脏瓣膜疾病(即主动脉瓣关闭不全、主动脉瓣狭窄和肺动脉瓣狭窄声音)以及正常声音的主要统计特征。然后交替应用人工神经网络(ANN)和统计分类器来选择合适的独特特征。两种分类方法都建议使用具有四个消失矩的Daubechies小波滤波器,在五个分解级别内以最显著地区分这些疾病。所提供的ANN是一种具有一个隐藏层的多层感知器结构,通过反向传播算法(MLP-BP)进行训练,其分类准确率提高到了94.42%。最终,在小波域中对相应的主要特征进行处理,以便依次重建基础信号的各个对应信号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验