Suppr超能文献

具有可控环状RGD肽组织的仿生水凝胶支架的设计与合成。

Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides.

作者信息

Zhu Junmin, Tang Chad, Kottke-Marchant Kandice, Marchant Roger E

机构信息

Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.

出版信息

Bioconjug Chem. 2009 Feb;20(2):333-9. doi: 10.1021/bc800441v.

Abstract

We report on the rational design and synthesis of a new type of bioactive poly(ethylene glycol) diacrylate (PEGDA) macromers, cyclic Arg-Gly-Asp (cRGD)-PEGDA, to mimic the cell-adhesive properties of extracellular matrix (ECM), aiming to create biomimetic scaffolds with controlled spatial organization of ligands and enhanced cell binding affinity for tissue engineering. To attach the cRGD peptide in the middle of PEGDA chain, a tailed cRGD peptide, c[RGDfE(SSSKK-NH2)] (1), was synthesized with c(RGDfE) linked to a tail of SSSKK. The tail consists of a spacer with three serine residues and a linker with two lysine residues for conjugating with acryloyl-PEG-NHS (5) to create cRGD-PEGDA (6). cRGD-PEGDA possesses good photopolymerization ability to fabricate hydrogel scaffolds under UV radiation. Surface morphology and composition analysis demonstrates that cRGD-PEGDA hydrogels were well-constructed with porous three-dimensional (3D) structures and uniform distribution of cRGD ligands. Our results show that cRGD-PEGDA hydrogels facilitate endothelial cell (EC) adhesion and spreading on the hydrogel surfaces and exhibit significantly higher EC population in comparison with linear RGD-modified hydrogels at low peptide incorporation. Since ligand presentation in biomimetic scaffolds plays an important role in controlling cell behavior, cRGD-PEGDA has great advantages of controlling hydrogel properties and ligand spatial organization in the resulting scaffolds. Furthermore, cRGD-PEGDA is an attractive candidate for the future development of tissue engineering scaffolds with optimum cell adhesive strength and ligand density.

摘要

我们报道了一种新型生物活性聚乙二醇二丙烯酸酯(PEGDA)大分子单体,即环状精氨酸 - 甘氨酸 - 天冬氨酸(cRGD)-PEGDA的合理设计与合成,旨在模拟细胞外基质(ECM)的细胞黏附特性,以创建具有可控配体空间组织和增强细胞结合亲和力的仿生支架用于组织工程。为了将cRGD肽连接到PEGDA链的中间,合成了一种带尾的cRGD肽,即c[RGDfE(SSSKK - NH2)](1),其中c(RGDfE)连接到由三个丝氨酸残基组成的间隔区和两个赖氨酸残基组成的连接子上,用于与丙烯酰基 - PEG - NHS(5)共轭以生成cRGD - PEGDA(6)。cRGD - PEGDA具有良好的光聚合能力,可在紫外线辐射下制备水凝胶支架。表面形态和组成分析表明,cRGD - PEGDA水凝胶具有良好构建的多孔三维(3D)结构以及cRGD配体的均匀分布。我们的结果表明,cRGD - PEGDA水凝胶促进内皮细胞(EC)在水凝胶表面的黏附与铺展,并且在低肽掺入量时与线性RGD修饰的水凝胶相比,表现出显著更高的EC数量。由于仿生支架中的配体呈现对控制细胞行为起着重要作用,cRGD - PEGDA在控制所得支架中的水凝胶性质和配体空间组织方面具有很大优势。此外,cRGD - PEGDA是未来开发具有最佳细胞黏附强度和配体密度的组织工程支架的有吸引力的候选材料。

相似文献

3
Controlled proteolytic cleavage site presentation in biomimetic PEGDA hydrogels enhances neovascularization in vitro.
Tissue Eng Part A. 2012 Dec;18(23-24):2477-86. doi: 10.1089/ten.TEA.2012.0173. Epub 2012 Jul 25.
4
Extracellular matrix-mimetic poly(ethylene glycol) hydrogels engineered to regulate smooth muscle cell proliferation in 3-D.
Acta Biomater. 2014 Dec;10(12):5106-5115. doi: 10.1016/j.actbio.2014.08.025. Epub 2014 Aug 27.
6
Biomimetic-engineered poly (ethylene glycol) hydrogel for smooth muscle cell migration.
Tissue Eng Part A. 2014 Feb;20(3-4):864-73. doi: 10.1089/ten.TEA.2013.0050. Epub 2014 Jan 9.
7
Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering.
Acta Biomater. 2015 Mar;14:11-21. doi: 10.1016/j.actbio.2014.11.042. Epub 2014 Nov 26.
8
Three-dimensional biomimetic patterning in hydrogels to guide cellular organization.
Adv Mater. 2012 May 2;24(17):2344-8. doi: 10.1002/adma.201200395. Epub 2012 Mar 30.
9
Assembly of RGD-Modified Hydrogel Micromodules into Permeable Three-Dimensional Hollow Microtissues Mimicking in Vivo Tissue Structures.
ACS Appl Mater Interfaces. 2017 Dec 6;9(48):41669-41679. doi: 10.1021/acsami.7b10960. Epub 2017 Nov 21.
10

引用本文的文献

1
Multifunctional hydrogels with spatially controlled light activation with photocaged oligonucleotides.
Cell Rep Phys Sci. 2024 May 15;5(5). doi: 10.1016/j.xcrp.2024.101922. Epub 2024 Apr 4.
2
3D Printing of Noncytotoxic High-Resolution Microchannels in Bisphenol-A Ethoxylate Dimethacrylate Tissue-Mimicking Materials.
3D Print Addit Manuf. 2023 Oct 1;10(5):1101-1109. doi: 10.1089/3dp.2021.0235. Epub 2023 Oct 10.
4
Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering.
Chem Rev. 2022 Nov 23;122(22):16839-16909. doi: 10.1021/acs.chemrev.1c00798. Epub 2022 Sep 15.
5
Synthesis of medium-ring lactams and macrocyclic peptide mimetics conjugate addition/ring expansion cascade reactions.
RSC Chem Biol. 2022 Feb 9;3(3):334-340. doi: 10.1039/d1cb00245g. eCollection 2022 Mar 9.
6
Advances in hydrogel-based vascularized tissues for tissue repair and drug screening.
Bioact Mater. 2021 Jul 10;9:198-220. doi: 10.1016/j.bioactmat.2021.07.005. eCollection 2022 Mar.
7
Tailoring Therapeutic Responses via Engineering Microenvironments with a Novel Synthetic Fluid Gel.
Adv Healthc Mater. 2021 Aug;10(16):e2100622. doi: 10.1002/adhm.202100622. Epub 2021 Jun 23.
8
Hydrogel Micropost Arrays with Single Post Tunability to Study Cell Volume and Mechanotransduction.
Adv Biosyst. 2020 Nov;4(11):e2000012. doi: 10.1002/adbi.202000012. Epub 2020 Oct 14.
10
Biomaterials: Foreign Bodies or Tuners for the Immune Response?
Int J Mol Sci. 2019 Feb 1;20(3):636. doi: 10.3390/ijms20030636.

本文引用的文献

1
Covalently immobilized biosignal molecule materials for tissue engineering.
Soft Matter. 2007 Dec 11;4(1):46-56. doi: 10.1039/b708359a.
2
Selective RGD-Mediated Adhesion of Osteoblasts at Surfaces of Implants.
Angew Chem Int Ed Engl. 1999 Feb 15;38(4):560-562. doi: 10.1002/(SICI)1521-3773(19990215)38:4<560::AID-ANIE560>3.0.CO;2-F.
3
Three-dimensional cell culture matrices: state of the art.
Tissue Eng Part B Rev. 2008 Mar;14(1):61-86. doi: 10.1089/teb.2007.0150.
4
Smart biomaterials for tissue engineering of cartilage.
Injury. 2008 Apr;39 Suppl 1:S77-87. doi: 10.1016/j.injury.2008.01.036.
5
Platelet and endothelial adhesion on fluorosurfactant polymers designed for vascular graft modification.
J Biomed Mater Res A. 2009 Feb;88(2):348-58. doi: 10.1002/jbm.a.31888.
7
Engineering cartilage tissue.
Adv Drug Deliv Rev. 2008 Jan 14;60(2):243-62. doi: 10.1016/j.addr.2007.08.027. Epub 2007 Oct 5.
9
Materials science. Hydrogel cell cultures.
Science. 2007 May 25;316(5828):1133-4. doi: 10.1126/science.1140171.
10
The extracellular matrix as a biologic scaffold material.
Biomaterials. 2007 Sep;28(25):3587-93. doi: 10.1016/j.biomaterials.2007.04.043. Epub 2007 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验