Levey Andrew S, Stevens Lesley A, Schmid Christopher H, Zhang Yaping Lucy, Castro Alejandro F, Feldman Harold I, Kusek John W, Eggers Paul, Van Lente Frederick, Greene Tom, Coresh Josef
Tufts Medical Center, Boston, Massachusetts 02111, USA.
Ann Intern Med. 2009 May 5;150(9):604-12. doi: 10.7326/0003-4819-150-9-200905050-00006.
Equations to estimate glomerular filtration rate (GFR) are routinely used to assess kidney function. Current equations have limited precision and systematically underestimate measured GFR at higher values.
To develop a new estimating equation for GFR: the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation.
Cross-sectional analysis with separate pooled data sets for equation development and validation and a representative sample of the U.S. population for prevalence estimates.
Research studies and clinical populations ("studies") with measured GFR and NHANES (National Health and Nutrition Examination Survey), 1999 to 2006.
8254 participants in 10 studies (equation development data set) and 3896 participants in 16 studies (validation data set). Prevalence estimates were based on 16,032 participants in NHANES.
GFR, measured as the clearance of exogenous filtration markers (iothalamate in the development data set; iothalamate and other markers in the validation data set), and linear regression to estimate the logarithm of measured GFR from standardized creatinine levels, sex, race, and age.
In the validation data set, the CKD-EPI equation performed better than the Modification of Diet in Renal Disease Study equation, especially at higher GFR (P < 0.001 for all subsequent comparisons), with less bias (median difference between measured and estimated GFR, 2.5 vs. 5.5 mL/min per 1.73 m(2)), improved precision (interquartile range [IQR] of the differences, 16.6 vs. 18.3 mL/min per 1.73 m(2)), and greater accuracy (percentage of estimated GFR within 30% of measured GFR, 84.1% vs. 80.6%). In NHANES, the median estimated GFR was 94.5 mL/min per 1.73 m(2) (IQR, 79.7 to 108.1) vs. 85.0 (IQR, 72.9 to 98.5) mL/min per 1.73 m(2), and the prevalence of chronic kidney disease was 11.5% (95% CI, 10.6% to 12.4%) versus 13.1% (CI, 12.1% to 14.0%).
The sample contained a limited number of elderly people and racial and ethnic minorities with measured GFR.
The CKD-EPI creatinine equation is more accurate than the Modification of Diet in Renal Disease Study equation and could replace it for routine clinical use.
National Institute of Diabetes and Digestive and Kidney Diseases.
估算肾小球滤过率(GFR)的公式常用于评估肾功能。目前的公式精度有限,在较高GFR值时会系统性低估实测GFR。
开发一种新的GFR估算公式:慢性肾脏病流行病学协作组(CKD-EPI)公式。
采用横断面分析,使用单独的汇总数据集进行公式开发和验证,并使用美国人群的代表性样本进行患病率估计。
纳入有实测GFR的研究和临床人群(“研究”)以及1999年至2006年的美国国家健康与营养检查调查(NHANES)。
10项研究中的8254名参与者(公式开发数据集)和16项研究中的3896名参与者(验证数据集)。患病率估计基于NHANES中的16032名参与者。
GFR通过外源性滤过标志物的清除率来测量(开发数据集中为碘他拉酸盐;验证数据集中为碘他拉酸盐和其他标志物),并通过线性回归从标准化肌酐水平、性别、种族和年龄估算实测GFR的对数。
在验证数据集中,CKD-EPI公式的表现优于肾脏病膳食改良研究公式,尤其是在较高GFR时(所有后续比较P<0.001),偏差更小(实测GFR与估算GFR的中位数差异为每1.73 m² 2.5 vs. 5.5 mL/min),精度提高(差异的四分位间距[IQR]为每1.73 m² 16.6 vs. 18.3 mL/min),准确性更高(估算GFR在实测GFR的30%范围内的百分比为84.1% vs. 80.6%)。在NHANES中,估算GFR的中位数为每1.73 m² 94.5 mL/min(IQR,79.7至108.1),而肾脏病膳食改良研究公式为每1.73 m² 85.0(IQR,72.9至98.5)mL/min,慢性肾脏病的患病率为11.5%(95%CI,10.6%至12.4%),而肾脏病膳食改良研究公式为13.1%(CI,12.1%至14.0%)。
样本中实测GFR的老年人以及种族和少数民族数量有限。
CKD-EPI肌酐公式比肾脏病膳食改良研究公式更准确,可取代其用于常规临床应用。
美国国立糖尿病、消化和肾脏疾病研究所。