Suppr超能文献

酶促过渡态与越过势垒过程中的动态运动。

Enzymatic transition states and dynamic motion in barrier crossing.

作者信息

Schwartz Steven D, Schramm Vern L

机构信息

Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.

出版信息

Nat Chem Biol. 2009 Aug;5(8):551-8. doi: 10.1038/nchembio.202.

Abstract

What are the atomic motions at enzymatic catalytic sites on the timescale of chemical change? Combined experimental and computational chemistry approaches take advantage of transition-state analogs to reveal dynamic motions linked to transition-state formation. QM/MM transition path sampling from reactive complexes provides both temporal and dynamic information for barrier crossing. Fast (femtosecond to picosecond) dynamic motions provide essential links to enzymatic barrier crossing by local or promoting-mode dynamic searches through bond-vibrational space. Transition-state lifetimes are within the femtosecond timescales of bond vibrations and show no manifestations of stabilized, equilibrated complexes. The slow binding and protein conformational changes (microsecond to millisecond) also required for catalysis are temporally decoupled from the fast dynamic motions forming the transition state. According to this view of enzymatic catalysis, transition states are formed by fast, coincident dynamic excursions of catalytic site elements, while the binding of transition-state analogs is the conversion of the dynamic excursions to equilibrated states.

摘要

在化学变化的时间尺度上,酶催化位点的原子运动是怎样的?结合实验和计算化学方法利用过渡态类似物来揭示与过渡态形成相关的动态运动。来自反应性复合物的量子力学/分子力学过渡路径采样提供了跨越能垒的时间和动态信息。快速(飞秒到皮秒)的动态运动通过在键振动空间中进行局部或促进模式的动态搜索,为酶促跨越能垒提供了重要联系。过渡态寿命处于键振动的飞秒时间尺度内,并且没有显示出稳定的、平衡复合物的迹象。催化所需的缓慢结合和蛋白质构象变化(微秒到毫秒)在时间上与形成过渡态的快速动态运动解耦。根据这种酶催化观点,过渡态是由催化位点元素的快速、同时发生的动态偏移形成的,而过渡态类似物的结合是动态偏移向平衡态的转变。

相似文献

1
Enzymatic transition states and dynamic motion in barrier crossing.
Nat Chem Biol. 2009 Aug;5(8):551-8. doi: 10.1038/nchembio.202.
2
Enzymatic transition states: thermodynamics, dynamics and analogue design.
Arch Biochem Biophys. 2005 Jan 1;433(1):13-26. doi: 10.1016/j.abb.2004.08.035.
3
Femtosecond dynamics coupled to chemical barrier crossing in a Born-Oppenheimer enzyme.
Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18661-5. doi: 10.1073/pnas.1114900108. Epub 2011 Nov 7.
4
Enzymatic transition states and transition state analogues.
Curr Opin Struct Biol. 2005 Dec;15(6):604-13. doi: 10.1016/j.sbi.2005.10.017. Epub 2005 Nov 4.
5
Atomic detail of chemical transformation at the transition state of an enzymatic reaction.
Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16543-8. doi: 10.1073/pnas.0808413105. Epub 2008 Oct 22.
6
Transition States and transition state analogue interactions with enzymes.
Acc Chem Res. 2015 Apr 21;48(4):1032-9. doi: 10.1021/acs.accounts.5b00002. Epub 2015 Apr 7.
7
Isotope-specific and amino acid-specific heavy atom substitutions alter barrier crossing in human purine nucleoside phosphorylase.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11247-51. doi: 10.1073/pnas.1513956112. Epub 2015 Aug 24.
8
Connecting Conformational Motions to Rapid Dynamics in Human Purine Nucleoside Phosphorylase.
J Phys Chem B. 2023 Jan 12;127(1):144-150. doi: 10.1021/acs.jpcb.2c07243. Epub 2022 Dec 20.
9
Promoting Vibrations and the Function of Enzymes. Emerging Theoretical and Experimental Convergence.
Biochemistry. 2018 Jun 19;57(24):3299-3308. doi: 10.1021/acs.biochem.8b00201. Epub 2018 Apr 10.
10
Enzymatic transition states, transition-state analogs, dynamics, thermodynamics, and lifetimes.
Annu Rev Biochem. 2011;80:703-32. doi: 10.1146/annurev-biochem-061809-100742.

引用本文的文献

1
Dynamic energy conversion in protein catalysis: From brownian motion to enzymatic function.
Comput Struct Biotechnol J. 2025 Jul 30;27:3337-3369. doi: 10.1016/j.csbj.2025.07.050. eCollection 2025.
2
Fast product release requires active-site water dynamics in carbonic anhydrase.
Nat Commun. 2025 May 12;16(1):4404. doi: 10.1038/s41467-025-59645-x.
3
Transitioning enzyme catalysis towards photocatalysis.
Philos Trans A Math Phys Eng Sci. 2025 May 8;383(2296):20230380. doi: 10.1098/rsta.2023.0380.
4
Wide transition-state ensemble as key component for enzyme catalysis.
Elife. 2025 Feb 18;12:RP93099. doi: 10.7554/eLife.93099.
6
Computational Investigation of the Covalent Inhibition Mechanism of Bruton's Tyrosine Kinase by Ibrutinib.
J Chem Inf Model. 2024 Apr 22;64(8):3488-3502. doi: 10.1021/acs.jcim.4c00023. Epub 2024 Mar 28.
7
Transition Path Sampling Study of Engineered Enzymes That Catalyze the Morita-Baylis-Hillman Reaction: Why Is Enzyme Design so Difficult?
J Chem Inf Model. 2024 Mar 25;64(6):2101-2111. doi: 10.1021/acs.jcim.4c00045. Epub 2024 Mar 7.
8
Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development.
ACS Omega. 2024 Feb 8;9(7):7393-7412. doi: 10.1021/acsomega.3c09084. eCollection 2024 Feb 20.
9
Substrate Positioning Dynamics Involves a Non-Electrostatic Component to Mediate Catalysis.
J Phys Chem Lett. 2023 Dec 21;14(50):11480-11489. doi: 10.1021/acs.jpclett.3c02444. Epub 2023 Dec 12.
10

本文引用的文献

1
An integrated model for enzyme catalysis emerges from studies of hydrogen tunneling.
Chem Phys Lett. 2009 Mar 26;471(4-6):179-193. doi: 10.1016/j.cplett.2009.01.038.
2
Transition state analogs of 5'-methylthioadenosine nucleosidase disrupt quorum sensing.
Nat Chem Biol. 2009 Apr;5(4):251-7. doi: 10.1038/nchembio.153. Epub 2009 Mar 8.
4
Barrier compression enhances an enzymatic hydrogen-transfer reaction.
Angew Chem Int Ed Engl. 2009;48(8):1452-4. doi: 10.1002/anie.200805502.
5
Folding of polyglutamine chains.
J Chem Phys. 2008 Oct 7;129(13):135102. doi: 10.1063/1.2980043.
6
Uroporphyrinogen decarboxylation as a benchmark for the catalytic proficiency of enzymes.
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17328-33. doi: 10.1073/pnas.0809838105. Epub 2008 Nov 6.
7
Catalytic mechanism and performance of computationally designed enzymes for Kemp elimination.
J Am Chem Soc. 2008 Nov 26;130(47):15907-15. doi: 10.1021/ja804040s.
8
Atomic detail of chemical transformation at the transition state of an enzymatic reaction.
Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16543-8. doi: 10.1073/pnas.0808413105. Epub 2008 Oct 22.
9
Covalent and noncovalent intermediates of an NAD utilizing enzyme, human CD38.
Chem Biol. 2008 Oct 20;15(10):1068-78. doi: 10.1016/j.chembiol.2008.08.007.
10
Immucillins in custom catalytic-site cavities.
Bioorg Med Chem Lett. 2008 Nov 15;18(22):5900-3. doi: 10.1016/j.bmcl.2008.08.047. Epub 2008 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验