Suppr超能文献

同位素特异性和氨基酸特异性重原子取代改变了人类嘌呤核苷磷酸化酶中的屏障穿越。

Isotope-specific and amino acid-specific heavy atom substitutions alter barrier crossing in human purine nucleoside phosphorylase.

作者信息

Suarez Javier, Schramm Vern L

机构信息

Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461.

Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461

出版信息

Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11247-51. doi: 10.1073/pnas.1513956112. Epub 2015 Aug 24.

Abstract

Computational chemistry predicts that atomic motions on the femtosecond timescale are coupled to transition-state formation (barrier-crossing) in human purine nucleoside phosphorylase (PNP). The prediction is experimentally supported by slowed catalytic site chemistry in isotopically labeled PNP (13C, 15N, and 2H). However, other explanations are possible, including altered volume or bond polarization from carbon-deuterium bonds or propagation of the femtosecond bond motions into slower (nanoseconds to milliseconds) motions of the larger protein architecture to alter catalytic site chemistry. We address these possibilities by analysis of chemistry rates in isotope-specific labeled PNPs. Catalytic site chemistry was slowed for both [2H]PNP and [13C, 15N]PNP in proportion to their altered protein masses. Secondary effects emanating from carbon-deuterium bond properties can therefore be eliminated. Heavy-enzyme mass effects were probed for local or global contributions to catalytic site chemistry by generating [15N, 2H]His8-PNP. Of the eight His per subunit, three participate in contacts to the bound reactants and five are remote from the catalytic sites. [15N, 2H]His8-PNP had reduced catalytic site chemistry larger than proportional to the enzymatic mass difference. Altered barrier crossing when only His are heavy supports local catalytic site femtosecond perturbations coupled to transition-state formation. Isotope-specific and amino acid specific labels extend the use of heavy enzyme methods to distinguish global from local isotope effects.

摘要

计算化学预测,飞秒时间尺度上的原子运动与人类嘌呤核苷磷酸化酶(PNP)中的过渡态形成(跨越势垒)相关联。这一预测在实验上得到了同位素标记的PNP(13C、15N和2H)中催化位点化学反应减慢的支持。然而,其他解释也是可能的,包括碳 - 氘键导致的体积或键极化改变,或者飞秒级别的键运动传播到更大蛋白质结构的较慢(纳秒到毫秒)运动中,从而改变催化位点化学性质。我们通过分析同位素特异性标记的PNP中的化学反应速率来探讨这些可能性。[2H]PNP和[13C, 15N]PNP的催化位点化学反应均按其改变后的蛋白质质量比例减慢。因此,可以消除由碳 - 氘键性质产生的次级效应。通过生成[15N, 2H]His8 - PNP来探究重酶质量效应对催化位点化学的局部或全局贡献。每个亚基的八个组氨酸中,三个参与与结合反应物的接触,五个远离催化位点。[15N, 2H]His8 - PNP的催化位点化学反应减慢程度大于与酶质量差异成比例的程度。仅组氨酸为重时势垒跨越的改变支持了与过渡态形成相关的局部催化位点飞秒级扰动。同位素特异性和氨基酸特异性标记扩展了重酶方法的应用,以区分全局和局部同位素效应。

相似文献

1
Isotope-specific and amino acid-specific heavy atom substitutions alter barrier crossing in human purine nucleoside phosphorylase.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11247-51. doi: 10.1073/pnas.1513956112. Epub 2015 Aug 24.
2
Inverse enzyme isotope effects in human purine nucleoside phosphorylase with heavy asparagine labels.
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6209-E6216. doi: 10.1073/pnas.1805416115. Epub 2018 Jun 18.
3
Catalytic-site design for inverse heavy-enzyme isotope effects in human purine nucleoside phosphorylase.
Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6456-6461. doi: 10.1073/pnas.1704786114. Epub 2017 Jun 5.
4
Femtosecond dynamics coupled to chemical barrier crossing in a Born-Oppenheimer enzyme.
Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18661-5. doi: 10.1073/pnas.1114900108. Epub 2011 Nov 7.
5
Modulating Enzyme Catalysis through Mutations Designed to Alter Rapid Protein Dynamics.
J Am Chem Soc. 2016 Mar 16;138(10):3403-9. doi: 10.1021/jacs.5b12551. Epub 2016 Mar 8.
7
Remote mutations alter transition-state structure of human purine nucleoside phosphorylase.
Biochemistry. 2008 Feb 26;47(8):2565-76. doi: 10.1021/bi702133x.

引用本文的文献

2
Decreased Transition-State Analogue Affinity in Isotopically Heavy MTAN with Increased Catalysis.
Biochemistry. 2023 Oct 17;62(20):2928-2933. doi: 10.1021/acs.biochem.3c00434. Epub 2023 Oct 3.
3
Atomistic description of the relationship between protein dynamics and catalysis with transition path sampling.
Methods Enzymol. 2023;685:319-340. doi: 10.1016/bs.mie.2023.03.005. Epub 2023 Apr 19.
4
Protein Mass-Modulated Effects in Alkaline Phosphatase.
Biochemistry. 2021 Jan 19;60(2):118-124. doi: 10.1021/acs.biochem.0c00917. Epub 2021 Jan 7.
5
Effect of Protein Isotope Labeling on the Catalytic Mechanism of Lactate Dehydrogenase.
J Phys Chem B. 2019 Nov 21;123(46):9801-9808. doi: 10.1021/acs.jpcb.9b08656. Epub 2019 Nov 6.
7
Heavy Enzymes and the Rational Redesign of Protein Catalysts.
Chembiochem. 2019 Nov 18;20(22):2807-2812. doi: 10.1002/cbic.201900134. Epub 2019 Jul 24.
8
Minimization of dynamic effects in the evolution of dihydrofolate reductase.
Chem Sci. 2016 May 1;7(5):3248-3255. doi: 10.1039/c5sc04209g. Epub 2016 Feb 3.
9
Inverse enzyme isotope effects in human purine nucleoside phosphorylase with heavy asparagine labels.
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6209-E6216. doi: 10.1073/pnas.1805416115. Epub 2018 Jun 18.
10
Promoting Vibrations and the Function of Enzymes. Emerging Theoretical and Experimental Convergence.
Biochemistry. 2018 Jun 19;57(24):3299-3308. doi: 10.1021/acs.biochem.8b00201. Epub 2018 Apr 10.

本文引用的文献

1
Role of dynamics in enzyme catalysis: substantial versus semantic controversies.
Acc Chem Res. 2015 Feb 17;48(2):466-73. doi: 10.1021/ar500322s. Epub 2014 Dec 24.
2
Protein mass-modulated effects in the catalytic mechanism of dihydrofolate reductase: beyond promoting vibrations.
J Am Chem Soc. 2014 Jun 11;136(23):8333-41. doi: 10.1021/ja501936d. Epub 2014 May 27.
3
5
Fast protein motions are coupled to enzyme H-transfer reactions.
J Am Chem Soc. 2013 Feb 20;135(7):2512-7. doi: 10.1021/ja311277k. Epub 2013 Feb 11.
6
Femtosecond dynamics coupled to chemical barrier crossing in a Born-Oppenheimer enzyme.
Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18661-5. doi: 10.1073/pnas.1114900108. Epub 2011 Nov 7.
7
Mass-dependent bond vibrational dynamics influence catalysis by HIV-1 protease.
J Am Chem Soc. 2011 Dec 7;133(48):19358-61. doi: 10.1021/ja209391n. Epub 2011 Nov 11.
8
Flexibility, diversity, and cooperativity: pillars of enzyme catalysis.
Biochemistry. 2011 Dec 6;50(48):10422-30. doi: 10.1021/bi201486f. Epub 2011 Nov 11.
10
Four generations of transition-state analogues for human purine nucleoside phosphorylase.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4805-12. doi: 10.1073/pnas.0913439107. Epub 2010 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验