Suppr超能文献

单子叶植物原始染色体的重建显示,植物的进化速度比动物更快。

Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals.

作者信息

Salse Jérôme, Abrouk Michael, Bolot Stéphanie, Guilhot Nicolas, Courcelle Emmanuel, Faraut Thomas, Waugh Robbie, Close Timothy J, Messing Joachim, Feuillet Catherine

机构信息

Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1095, Génétique, Diversité et Ecophysiologie des Céréales, Université Blaise Pascal, 234 Avenue du Brézet, 63100 Clermont Ferrand, France.

出版信息

Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14908-13. doi: 10.1073/pnas.0902350106. Epub 2009 Aug 13.

Abstract

Paleogenomics seeks to reconstruct ancestral genomes from the genes of today's species. The characterization of paleo-duplications represented by 11,737 orthologs and 4,382 paralogs identified in five species belonging to three of the agronomically most important subfamilies of grasses, that is, Ehrhartoideae (rice) Panicoideae (sorghum, maize), and Pooideae (wheat, barley), permitted us to propose a model for an ancestral genome with a minimal size of 33.6 Mb structured in five proto-chromosomes containing at least 9,138 predicted proto-genes. It appears that only four major evolutionary shuffling events (alpha, beta, gamma, and delta) explain the divergence of these five cereal genomes during their evolution from a common paleo-ancestor. Comparative analysis of ancestral gene function with rice as a reference indicated that five categories of genes were preferentially modified during evolution. Furthermore, alignments between the five grass proto-chromosomes and the recently identified seven eudicot proto-chromosomes indicated that additional very active episodes of genome rearrangements and gene mobility occurred during angiosperm evolution. If one compares the pace of primate evolution of 90 million years (233 species) to 60 million years of the Poaceae (10,000 species), change in chromosome structure through speciation has accelerated significantly in plants.

摘要

古基因组学旨在从当今物种的基因中重建祖先基因组。通过对禾本科三个在农业上最重要的亚科(即稻亚科(水稻)、黍亚科(高粱、玉米)和早熟禾亚科(小麦、大麦))的五个物种中鉴定出的11737个直系同源基因和4382个旁系同源基因所代表的古重复进行表征,我们得以提出一个祖先基因组模型,其最小大小为33.6兆碱基,由五个原染色体构成,包含至少9138个预测的原基因。似乎只有四个主要的进化重排事件(α、β、γ和δ)解释了这五个谷类基因组从共同的古祖先进化过程中的分歧。以水稻为参照对祖先基因功能进行的比较分析表明,五类基因在进化过程中被优先修饰。此外,五个禾本科原染色体与最近鉴定出的七个双子叶植物原染色体之间的比对表明,在被子植物进化过程中发生了额外的非常活跃的基因组重排和基因移动事件。如果将灵长类动物9000万年(233个物种)的进化速度与禾本科6000万年(10000个物种)的进化速度进行比较,那么通过物种形成导致的染色体结构变化在植物中显著加速。

相似文献

1
Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals.
Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14908-13. doi: 10.1073/pnas.0902350106. Epub 2009 Aug 13.
3
Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution.
Plant J. 2012 Aug;71(3):492-502. doi: 10.1111/j.1365-313X.2012.05005.x. Epub 2012 Jun 5.
4
Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution.
Genome Res. 2010 Nov;20(11):1545-57. doi: 10.1101/gr.109744.110. Epub 2010 Sep 28.
5
Organization of the prolamin gene family provides insight into the evolution of the maize genome and gene duplications in grass species.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14330-5. doi: 10.1073/pnas.0807026105. Epub 2008 Sep 15.
6
Amplification of prolamin storage protein genes in different subfamilies of the Poaceae.
Theor Appl Genet. 2009 Nov;119(8):1397-412. doi: 10.1007/s00122-009-1143-x. Epub 2009 Aug 29.
7
The 'inner circle' of the cereal genomes.
Curr Opin Plant Biol. 2009 Apr;12(2):119-25. doi: 10.1016/j.pbi.2008.10.011. Epub 2008 Dec 16.
8
Dynamic gene copy number variation in collinear regions of grass genomes.
Mol Biol Evol. 2012 Feb;29(2):861-71. doi: 10.1093/molbev/msr261. Epub 2011 Oct 14.
9
Genome sequencing and analysis of the model grass Brachypodium distachyon.
Nature. 2010 Feb 11;463(7282):763-8. doi: 10.1038/nature08747.
10
The Pharus latifolius genome bridges the gap of early grass evolution.
Plant Cell. 2021 May 31;33(4):846-864. doi: 10.1093/plcell/koab015.

引用本文的文献

3
Evolution of the DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN subfamily in green plants.
Plant Physiol. 2022 Aug 29;190(1):421-440. doi: 10.1093/plphys/kiac286.
4
Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution.
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2104254118.
5
Characterization of the Flowering Time Gene in a Mini-Core Collection of .
Genes (Basel). 2021 Feb 19;12(2):288. doi: 10.3390/genes12020288.
6
Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects.
Theor Appl Genet. 2021 Jan;134(1):1-35. doi: 10.1007/s00122-020-03709-7. Epub 2020 Nov 2.
7
Genetics and genomics of root system variation in adaptation to drought stress in cereal crops.
J Exp Bot. 2021 Feb 24;72(4):1007-1019. doi: 10.1093/jxb/eraa487.
10
Musa balbisiana genome reveals subgenome evolution and functional divergence.
Nat Plants. 2019 Aug;5(8):810-821. doi: 10.1038/s41477-019-0452-6. Epub 2019 Jul 15.

本文引用的文献

1
The Sorghum bicolor genome and the diversification of grasses.
Nature. 2009 Jan 29;457(7229):551-6. doi: 10.1038/nature07723.
2
Structure and expression analysis of rice paleo duplications.
Nucleic Acids Res. 2009 Mar;37(4):1248-59. doi: 10.1093/nar/gkn1048. Epub 2009 Jan 9.
3
The 'inner circle' of the cereal genomes.
Curr Opin Plant Biol. 2009 Apr;12(2):119-25. doi: 10.1016/j.pbi.2008.10.011. Epub 2008 Dec 16.
4
Many or most genes in Arabidopsis transposed after the origin of the order Brassicales.
Genome Res. 2008 Dec;18(12):1924-37. doi: 10.1101/gr.081026.108. Epub 2008 Oct 3.
5
Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps.
Genome Res. 2008 Dec;18(12):1944-54. doi: 10.1101/gr.080978.108. Epub 2008 Oct 2.
6
Organization of the prolamin gene family provides insight into the evolution of the maize genome and gene duplications in grass species.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14330-5. doi: 10.1073/pnas.0807026105. Epub 2008 Sep 15.
7
Grass genome structure and evolution.
Genome Dyn. 2008;4:41-56. doi: 10.1159/000126005.
8
A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing.
Cell. 2008 Aug 8;134(3):416-26. doi: 10.1016/j.cell.2008.06.021.
9
The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus).
Nature. 2008 Apr 24;452(7190):991-6. doi: 10.1038/nature06856.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验