Suppr超能文献

哥本哈根儿童时期六种感染病的季节性和对比动态

Seasonality and comparative dynamics of six childhood infections in pre-vaccination Copenhagen.

机构信息

Centre for Infectious Disease Dynamics, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.

出版信息

Proc Biol Sci. 2009 Dec 7;276(1676):4111-8. doi: 10.1098/rspb.2009.1058. Epub 2009 Sep 9.

Abstract

Seasonal variation in infection transmission is a key determinant of epidemic dynamics of acute infections. For measles, the best-understood strongly immunizing directly transmitted childhood infection, the perception is that term-time forcing is the main driver of seasonality in developed countries. The degree to which this holds true across other acute immunizing childhood infections is not clear. Here, we identify seasonal transmission patterns using a unique long-term dataset with weekly incidence of six infections including measles. Data on age-incidence allow us to quantify the mean age of infection. Results indicate correspondence between dips in transmission and school holidays for some infections, but there are puzzling discrepancies, despite close correspondence between average age of infection and age of schooling. Theoretical predictions of the relationship between amplitude of seasonality and basic reproductive rate of infections that should result from term-time forcing are also not upheld. We conclude that where yearly trajectories of susceptible numbers are perturbed, e.g. via waning of immunity, seasonality is unlikely to be entirely driven by term-time forcing. For the three bacterial infections, pertussis, scarlet fever and diphtheria, there is additionally a strong increase in transmission during the late summer before the end of school vacations.

摘要

季节性感染传播的变化是急性感染流行动力学的关键决定因素。对于麻疹,这是一种人们最了解的具有强烈免疫作用的直接传播的儿童感染,人们认为学期时间是发达国家季节性的主要驱动因素。但在其他急性免疫性儿童感染中,这种情况的普遍程度尚不清楚。在这里,我们使用包括麻疹在内的六种感染的每周发病率的独特长期数据集来确定季节性传播模式。关于年龄发病率的数据使我们能够量化感染的平均年龄。结果表明,对于某些感染,传播的下降与学校假期相对应,但存在令人费解的差异,尽管感染的平均年龄和入学年龄之间存在密切对应关系。理论上预测的季节性振幅与感染的基本繁殖率之间的关系,这些关系应该是由学期时间驱动的,也没有得到支持。我们的结论是,在易感人群数量的年轨迹受到干扰的情况下,例如通过免疫减弱,季节性不太可能完全由学期时间驱动。对于百日咳、猩红热和白喉这三种细菌性感染,在学校假期结束前的夏末,传播也会急剧增加。

相似文献

1
Seasonality and comparative dynamics of six childhood infections in pre-vaccination Copenhagen.
Proc Biol Sci. 2009 Dec 7;276(1676):4111-8. doi: 10.1098/rspb.2009.1058. Epub 2009 Sep 9.
2
Comparative dynamics, seasonality in transmission, and predictability of childhood infections in Mexico.
Epidemiol Infect. 2017 Feb;145(3):607-625. doi: 10.1017/S0950268816002673. Epub 2016 Nov 22.
3
Effects of seasonal variation patterns on recurrent outbreaks in epidemic models.
J Theor Biol. 2013 Jan 21;317:87-95. doi: 10.1016/j.jtbi.2012.09.038. Epub 2012 Oct 4.
4
Estimating enhanced prevaccination measles transmission hotspots in the context of cross-scale dynamics.
Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):14595-14600. doi: 10.1073/pnas.1604976113. Epub 2016 Nov 21.
6
The Reduction of Measles Transmission During School Vacations.
Epidemiology. 2018 Jul;29(4):562-570. doi: 10.1097/EDE.0000000000000841.
7
Impact of birth seasonality on dynamics of acute immunizing infections in Sub-Saharan Africa.
PLoS One. 2013 Oct 18;8(10):e75806. doi: 10.1371/journal.pone.0075806. eCollection 2013.
8
Rural-urban gradient in seasonal forcing of measles transmission in Niger.
Proc Biol Sci. 2010 Sep 22;277(1695):2775-82. doi: 10.1098/rspb.2010.0536. Epub 2010 Apr 28.
9
Decreasing stochasticity through enhanced seasonality in measles epidemics.
J R Soc Interface. 2010 May 6;7(46):727-39. doi: 10.1098/rsif.2009.0317. Epub 2009 Oct 14.
10
The Inverse Method for a Childhood Infectious Disease Model with Its Application to Pre-vaccination and Post-vaccination Measles Data.
Bull Math Biol. 2015 Dec;77(12):2231-63. doi: 10.1007/s11538-015-0121-5. Epub 2015 Nov 18.

引用本文的文献

1
Bias in the estimated reporting fraction due to vaccination in the time-series SIR model.
PLoS One. 2025 Aug 22;20(8):e0330568. doi: 10.1371/journal.pone.0330568. eCollection 2025.
3
4
Spatio-temporal modeling of co-dynamics of smallpox, measles, and pertussis in pre-healthcare Finland.
PeerJ. 2024 Sep 26;12:e18155. doi: 10.7717/peerj.18155. eCollection 2024.
5
Immunological landscape of human lymphoid explants during measles virus infection.
JCI Insight. 2024 Jul 25;9(17):e172261. doi: 10.1172/jci.insight.172261.
7
A generalized ODE susceptible-infectious-susceptible compartmental model with potentially periodic behavior.
Infect Dis Model. 2023 Nov 17;8(4):1190-1202. doi: 10.1016/j.idm.2023.11.007. eCollection 2023 Dec.
9
Mumps epidemic dynamics in the United States before vaccination (1923-1932).
Epidemics. 2023 Sep;44:100700. doi: 10.1016/j.epidem.2023.100700. Epub 2023 Jun 16.

本文引用的文献

1
The interplay between determinism and stochasticity in childhood diseases.
Am Nat. 2002 May;159(5):469-81. doi: 10.1086/339467.
2
Generation interval contraction and epidemic data analysis.
Math Biosci. 2008 May;213(1):71-9. doi: 10.1016/j.mbs.2008.02.007. Epub 2008 Feb 29.
3
The dynamics of measles in sub-Saharan Africa.
Nature. 2008 Feb 7;451(7179):679-84. doi: 10.1038/nature06509.
4
Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity.
Nat Clin Pract Endocrinol Metab. 2008 Feb;4(2):80-90. doi: 10.1038/ncpendmet0716.
6
Influenza virus transmission is dependent on relative humidity and temperature.
PLoS Pathog. 2007 Oct 19;3(10):1470-6. doi: 10.1371/journal.ppat.0030151.
7
Seasonal infectious disease epidemiology.
Proc Biol Sci. 2006 Oct 7;273(1600):2541-50. doi: 10.1098/rspb.2006.3604.
8
Seasonality and the dynamics of infectious diseases.
Ecol Lett. 2006 Apr;9(4):467-84. doi: 10.1111/j.1461-0248.2005.00879.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验