Suppr超能文献

酪氨酸磷酸化抑制 PKM2 以促进瓦博格效应和肿瘤生长。

Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth.

机构信息

Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.

出版信息

Sci Signal. 2009 Nov 17;2(97):ra73. doi: 10.1126/scisignal.2000431.

Abstract

The Warburg effect describes a pro-oncogenic metabolism switch such that cancer cells take up more glucose than normal tissue and favor incomplete oxidation of glucose even in the presence of oxygen. To better understand how tyrosine kinase signaling, which is commonly increased in tumors, regulates the Warburg effect, we performed phosphoproteomic studies. We found that oncogenic forms of fibroblast growth factor receptor type 1 inhibit the pyruvate kinase M2 (PKM2) isoform by direct phosphorylation of PKM2 tyrosine residue 105 (Y(105)). This inhibits the formation of active, tetrameric PKM2 by disrupting binding of the PKM2 cofactor fructose-1,6-bisphosphate. Furthermore, we found that phosphorylation of PKM2 Y(105) is common in human cancers. The presence of a PKM2 mutant in which phenylalanine is substituted for Y(105) (Y105F) in cancer cells leads to decreased cell proliferation under hypoxic conditions, increased oxidative phosphorylation with reduced lactate production, and reduced tumor growth in xenografts in nude mice. Our findings suggest that tyrosine phosphorylation regulates PKM2 to provide a metabolic advantage to tumor cells, thereby promoting tumor growth.

摘要

瓦博格效应描述了一种致癌代谢开关,即癌细胞摄取的葡萄糖比正常组织多,即使在氧气存在的情况下,也偏爱葡萄糖的不完全氧化。为了更好地理解酪氨酸激酶信号转导如何调节瓦博格效应,我们进行了磷酸化蛋白质组学研究。我们发现,成纤维细胞生长因子受体 1 的致癌形式通过直接磷酸化 PKM2 酪氨酸残基 105(Y(105))来抑制丙酮酸激酶 M2(PKM2)同工酶。这通过破坏 PKM2 辅助因子果糖-1,6-二磷酸的结合来抑制活性四聚体 PKM2 的形成。此外,我们发现 PKM2 Y(105)的磷酸化在人类癌症中很常见。在癌细胞中,将 Y(105)替换为苯丙氨酸的 PKM2 突变体(Y105F)导致缺氧条件下细胞增殖减少、氧化磷酸化增加、乳酸生成减少,以及裸鼠异种移植瘤生长减少。我们的发现表明,酪氨酸磷酸化调节 PKM2 为肿瘤细胞提供代谢优势,从而促进肿瘤生长。

相似文献

1
Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth.
Sci Signal. 2009 Nov 17;2(97):ra73. doi: 10.1126/scisignal.2000431.
2
4
5
Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD(+) redox homeostasis in cancer cells.
Mol Cell Biol. 2011 Dec;31(24):4938-50. doi: 10.1128/MCB.06120-11. Epub 2011 Oct 3.
7
Tyr-94 phosphorylation inhibits pyruvate dehydrogenase phosphatase 1 and promotes tumor growth.
J Biol Chem. 2014 Aug 1;289(31):21413-22. doi: 10.1074/jbc.M114.581124. Epub 2014 Jun 24.
8
Evidence for an alternative glycolytic pathway in rapidly proliferating cells.
Science. 2010 Sep 17;329(5998):1492-9. doi: 10.1126/science.1188015.
9
Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth.
Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4129-34. doi: 10.1073/pnas.1014769108. Epub 2011 Feb 15.
10
Reciprocal regulation of protein kinase and pyruvate kinase activities of pyruvate kinase M2 by growth signals.
J Biol Chem. 2013 May 31;288(22):15971-9. doi: 10.1074/jbc.M112.448753. Epub 2013 Apr 10.

引用本文的文献

3
An Insight into Cancer Cells and Disease Progression Through the Lens of Mathematical Modeling.
Curr Issues Mol Biol. 2025 Jun 20;47(7):477. doi: 10.3390/cimb47070477.
4
PKM2 apoptotic vesicle-mediated systemic senolytics ameliorate chronic periodontitis.
Bioact Mater. 2025 Jul 4;51:962-976. doi: 10.1016/j.bioactmat.2025.06.041. eCollection 2025 Sep.
5
Gene mutation in cancer patients with diabetes: a real-world retrospective cohort study.
BMC Cancer. 2025 Jul 10;25(1):1163. doi: 10.1186/s12885-025-14511-3.
6
Exploring the mechanism of Synechococcus sp. XM-24 in gastric cancer treatment via network pharmacology and molecular docking.
PLoS One. 2025 Jul 2;20(7):e0326664. doi: 10.1371/journal.pone.0326664. eCollection 2025.
7
Exosomes in hypoxia: generation, secretion, and physiological roles in cancer progression.
Front Immunol. 2025 Jun 4;16:1537313. doi: 10.3389/fimmu.2025.1537313. eCollection 2025.
8
Roles of Pyruvate Kinase M2 in Pulmonary Diseases: What Do We Know So Far?
Lung. 2025 Jun 4;203(1):67. doi: 10.1007/s00408-025-00821-7.
9
Post-translational modifications and the reprogramming of tumor metabolism.
Discov Oncol. 2025 May 26;16(1):929. doi: 10.1007/s12672-025-02674-1.
10
Research trends on lactate in cancer: a bibliometric analysis and comprehensive review (2015-2024).
Front Immunol. 2025 May 9;16:1587867. doi: 10.3389/fimmu.2025.1587867. eCollection 2025.

本文引用的文献

1
Fibroblast growth factor (FGF) and FGF receptor-mediated autocrine signaling in non-small-cell lung cancer cells.
Mol Pharmacol. 2009 Jan;75(1):196-207. doi: 10.1124/mol.108.049544. Epub 2008 Oct 10.
2
Tumor cell metabolism: cancer's Achilles' heel.
Cancer Cell. 2008 Jun;13(6):472-82. doi: 10.1016/j.ccr.2008.05.005.
3
4
Pyruvate kinase M2 is a phosphotyrosine-binding protein.
Nature. 2008 Mar 13;452(7184):181-6. doi: 10.1038/nature06667.
5
Modulation of M2-type pyruvate kinase activity by the cytoplasmic PML tumor suppressor protein.
Genes Cells. 2008 Mar;13(3):245-54. doi: 10.1111/j.1365-2443.2008.01165.x.
6
Current status of tumor M2 pyruvate kinase (tumor M2-PK) as a biomarker of gastrointestinal malignancy.
Ann Surg Oncol. 2007 Oct;14(10):2714-20. doi: 10.1245/s10434-007-9481-x. Epub 2007 Jun 30.
7
Hypoxia signalling controls metabolic demand.
Curr Opin Cell Biol. 2007 Apr;19(2):223-9. doi: 10.1016/j.ceb.2007.02.003. Epub 2007 Feb 15.
8
Tumour M2-pyruvate kinase: a gastrointestinal cancer marker.
Eur J Gastroenterol Hepatol. 2007 Mar;19(3):265-76. doi: 10.1097/MEG.0b013e3280102f78.
9
FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas.
Clin Cancer Res. 2006 Nov 15;12(22):6652-62. doi: 10.1158/1078-0432.CCR-06-1164.
10
Phosphotyrosine profiling identifies the KG-1 cell line as a model for the study of FGFR1 fusions in acute myeloid leukemia.
Blood. 2006 Dec 15;108(13):4202-4. doi: 10.1182/blood-2006-06-026666. Epub 2006 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验