Suppr超能文献

利用锌指核酸酶在人体细胞中进行靶向染色体缺失。

Targeted chromosomal deletions in human cells using zinc finger nucleases.

机构信息

Department of Chemistry, Seoul National University, Seoul, South Korea.

出版信息

Genome Res. 2010 Jan;20(1):81-9. doi: 10.1101/gr.099747.109. Epub 2009 Dec 1.

Abstract

We present a novel approach for generating targeted deletions of genomic segments in human and other eukaryotic cells using engineered zinc finger nucleases (ZFNs). We found that ZFNs designed to target two different sites in a human chromosome could introduce two concurrent DNA double-strand breaks (DSBs) in the chromosome and give rise to targeted deletions of the genomic segment between the two sites. Using this method in human cells, we were able to delete predetermined genomic DNA segments in the range of several-hundred base pairs (bp) to 15 mega-bp at frequencies of 10(-3) to 10(-1). These high frequencies allowed us to isolate clonal populations of cells, in which the target chromosomal segments were deleted, by limiting dilution. Sequence analysis revealed that many of the deletion junctions contained small insertions or deletions and microhomologies, indicative of DNA repair via nonhomologous end-joining. Unlike other genome engineering tools such as recombinases and meganucleases, ZFNs do not require preinsertion of target sites into the genome and allow precise manipulation of endogenous genomic scripts in animal and plant cells. Thus, ZFN-induced genomic deletions should be broadly useful as a novel method in biomedical research, biotechnology, and gene therapy.

摘要

我们提出了一种新的方法,使用工程化的锌指核酸酶(ZFN)在人类和其他真核细胞中生成靶向基因组片段的缺失。我们发现,设计用于靶向人类染色体上两个不同位点的 ZFN 可以在染色体中引入两个同时发生的 DNA 双链断裂(DSB),并导致两个靶位点之间的基因组片段发生靶向缺失。在人类细胞中使用这种方法,我们能够以 10(-3) 到 10(-1)的频率删除几个至数百个碱基对(bp)到 15 兆碱基对(Mb)范围内的预定基因组 DNA 片段。这些高频率使我们能够通过限制稀释分离出靶染色体片段缺失的克隆细胞群体。序列分析表明,许多缺失连接点含有小的插入或缺失和微同源性,表明通过非同源末端连接进行 DNA 修复。与其他基因组工程工具(如重组酶和 meganuclease)不同,ZFN 不需要将靶位点预先插入基因组中,并允许在动植物细胞中精确操作内源性基因组序列。因此,ZFN 诱导的基因组缺失应该作为一种新的方法在生物医学研究、生物技术和基因治疗中广泛应用。

相似文献

1
Targeted chromosomal deletions in human cells using zinc finger nucleases.
Genome Res. 2010 Jan;20(1):81-9. doi: 10.1101/gr.099747.109. Epub 2009 Dec 1.
2
Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases.
Genome Res. 2012 Mar;22(3):539-48. doi: 10.1101/gr.129635.111. Epub 2011 Dec 19.
3
Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme.
Genome Res. 2012 Jul;22(7):1316-26. doi: 10.1101/gr.122879.111. Epub 2012 Mar 20.
4
Highly efficient targeted chromosome deletions using CRISPR/Cas9.
Biotechnol Bioeng. 2015 May;112(5):1060-4. doi: 10.1002/bit.25490. Epub 2014 Dec 23.
5
Targeted manipulation of mammalian genomes using designed zinc finger nucleases.
Biochem Biophys Res Commun. 2009 Oct 9;388(1):56-61. doi: 10.1016/j.bbrc.2009.07.112. Epub 2009 Jul 25.
6
7
Genome editing with CompoZr custom zinc finger nucleases (ZFNs).
J Vis Exp. 2012 Jun 14(64):e3304. doi: 10.3791/3304.
8
Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly.
Genome Res. 2009 Jul;19(7):1279-88. doi: 10.1101/gr.089417.108. Epub 2009 May 21.
9
Creating designed zinc-finger nucleases with minimal cytotoxicity.
J Mol Biol. 2011 Jan 21;405(3):630-41. doi: 10.1016/j.jmb.2010.10.043. Epub 2010 Nov 19.
10
Genome engineering with zinc-finger nucleases.
Genetics. 2011 Aug;188(4):773-82. doi: 10.1534/genetics.111.131433.

引用本文的文献

1
Applications of multiplexed CRISPR-Cas for genome engineering.
Exp Mol Med. 2025 Jul;57(7):1373-1380. doi: 10.1038/s12276-025-01500-6. Epub 2025 Jul 31.
2
Gene editing without ex vivo culture evades genotoxicity in human hematopoietic stem cells.
Cell Stem Cell. 2025 Feb 6;32(2):191-208.e11. doi: 10.1016/j.stem.2024.11.001. Epub 2024 Dec 12.
3
Engineering structural variants to interrogate genome function.
Nat Genet. 2024 Dec;56(12):2623-2635. doi: 10.1038/s41588-024-01981-7. Epub 2024 Nov 12.
4
Temporal restriction of Cas9 expression improves CRISPR-mediated deletion efficacy and fidelity.
Mol Ther Nucleic Acids. 2024 Mar 11;35(2):102172. doi: 10.1016/j.omtn.2024.102172. eCollection 2024 Jun 11.
5
A mechanistic study on the tolerance of PAM distal end mismatch by SpCas9.
J Biol Chem. 2024 Jul;300(7):107439. doi: 10.1016/j.jbc.2024.107439. Epub 2024 Jun 3.
6
CRISPR-based editing strategies to rectify complex genomic rearrangement linked to haploinsufficiency.
Mol Ther Nucleic Acids. 2024 Apr 23;35(2):102199. doi: 10.1016/j.omtn.2024.102199. eCollection 2024 Jun 11.
7
Progress and Prospects of Gene Editing in Pluripotent Stem Cells.
Biomedicines. 2023 Aug 1;11(8):2168. doi: 10.3390/biomedicines11082168.
8
HDR-based CRISPR/Cas9-mediated Knockout of PD-L1 in C57BL/6 Mice.
Bio Protoc. 2023 Jul 20;13(14):e4724. doi: 10.21769/BioProtoc.4724.
9
Minimizing the off-target frequency of the CRISPR/Cas9 system zwitterionic polymer conjugation and peptide fusion.
Chem Sci. 2023 May 19;14(23):6375-6382. doi: 10.1039/d2sc07067g. eCollection 2023 Jun 14.
10
Multiplex Editing of the Tandem Array in Poplar: From Small Indels to Translocations and Complex Inversions.
CRISPR J. 2023 Aug;6(4):339-349. doi: 10.1089/crispr.2022.0096. Epub 2023 Jun 12.

本文引用的文献

1
Chromosomal translocations induced at specified loci in human stem cells.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10620-5. doi: 10.1073/pnas.0902076106. Epub 2009 Jun 23.
2
Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells.
Cell Stem Cell. 2009 Jul 2;5(1):97-110. doi: 10.1016/j.stem.2009.05.023. Epub 2009 Jun 18.
3
Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly.
Genome Res. 2009 Jul;19(7):1279-88. doi: 10.1101/gr.089417.108. Epub 2009 May 21.
4
Protein engineering: The fate of fingers.
Nature. 2008 Sep 11;455(7210):160-4. doi: 10.1038/455160a.
6
7
Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases.
Nat Biotechnol. 2008 Jul;26(7):808-16. doi: 10.1038/nbt1410. Epub 2008 Jun 29.
8
Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases.
Nat Biotechnol. 2008 Jun;26(6):695-701. doi: 10.1038/nbt1398. Epub 2008 May 25.
9
Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases.
Nat Biotechnol. 2008 Jun;26(6):702-8. doi: 10.1038/nbt1409. Epub 2008 May 25.
10
Unexpected failure rates for modular assembly of engineered zinc fingers.
Nat Methods. 2008 May;5(5):374-5. doi: 10.1038/nmeth0508-374.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验