Suppr超能文献

Tudor 和 dPRMT5 在果蝇生殖系的 piRNA 加工途径中的功能作用。

Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines.

机构信息

Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan.

出版信息

EMBO J. 2009 Dec 16;28(24):3820-31. doi: 10.1038/emboj.2009.365.

Abstract

In Drosophila, the PIWI proteins, Aubergine (Aub), AGO3, and Piwi are expressed in germlines and function in silencing transposons by associating with PIWI-interacting RNAs (piRNAs). Recent studies show that PIWI proteins contain symmetric dimethyl-arginines (sDMAs) and that dPRMT5/Capsuleen/DART5 is the modifying enzyme. Here, we show that Tudor (Tud), one of Tud domain-containing proteins, associates with Aub and AGO3, specifically through their sDMA modifications and that these three proteins form heteromeric complexes. piRNA precursor-like molecules are detected in these complexes. The expression levels of Aub and AGO3, along with their degree of sDMA modification, were not changed by tud mutations. However, the population of transposon-derived piRNAs associated with Aub and AGO3 was altered by tud mutations, whereas the total amounts of small RNAs on Aub and AGO3 was increased. Loss of dprmt5 did not change the stability of Aub, but impaired its association with Tud and lowered piRNA association with Aub. Thus, in germline cells, piRNAs are quality-controlled by dPRMT5 that modifies PIWI proteins, in tight association with Tud.

摘要

在果蝇中,PIWI 蛋白、Aubergine (Aub)、AGO3 和 Piwi 在生殖系中表达,并通过与 PIWI 相互作用 RNA(piRNAs)结合来沉默转座子。最近的研究表明,PIWI 蛋白含有对称二甲基精氨酸 (sDMA),而 dPRMT5/Capsuleen/DART5 是修饰酶。在这里,我们表明,Tud 是含有 Tud 结构域的蛋白之一,与 Aub 和 AGO3 特异性地通过它们的 sDMA 修饰结合,并且这三种蛋白形成异源三聚体复合物。在这些复合物中检测到类似 piRNA 前体的分子。尽管 tud 突变不会改变 Aub 和 AGO3 的表达水平及其 sDMA 修饰程度,但与 Aub 和 AGO3 相关的转座子衍生 piRNA 的群体发生了改变,而 Aub 和 AGO3 上的小 RNA 总量增加。dprmt5 的缺失不会改变 Aub 的稳定性,但会损害其与 Tud 的结合,并降低 piRNA 与 Aub 的结合。因此,在生殖细胞中,piRNA 由修饰 PIWI 蛋白的 dPRMT5 进行质量控制,与 Tud 紧密结合。

相似文献

2
Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability.
Nat Cell Biol. 2009 May;11(5):652-8. doi: 10.1038/ncb1872. Epub 2009 Apr 19.
3
Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization.
RNA. 2010 Jan;16(1):70-8. doi: 10.1261/rna.1869710. Epub 2009 Nov 19.
4
How does the royal family of Tudor rule the PIWI-interacting RNA pathway?
Genes Dev. 2010 Apr 1;24(7):636-46. doi: 10.1101/gad.1899210.
5
Tudor-domain containing proteins act to make the piRNA pathways more robust in Drosophila.
Fly (Austin). 2015;9(2):86-90. doi: 10.1080/19336934.2015.1128599.
6
A novel organelle, the piNG-body, in the nuage of Drosophila male germ cells is associated with piRNA-mediated gene silencing.
Mol Biol Cell. 2011 Sep;22(18):3410-9. doi: 10.1091/mbc.E11-02-0168. Epub 2011 Jul 20.
7
Krimper Enforces an Antisense Bias on piRNA Pools by Binding AGO3 in the Drosophila Germline.
Mol Cell. 2015 Aug 20;59(4):553-63. doi: 10.1016/j.molcel.2015.06.024. Epub 2015 Jul 23.
8
PAPI, a novel TUDOR-domain protein, complexes with AGO3, ME31B and TRAL in the nuage to silence transposition.
Development. 2011 May;138(9):1863-73. doi: 10.1242/dev.059287. Epub 2011 Mar 29.
9
Heterotypic piRNA Ping-Pong requires qin, a protein with both E3 ligase and Tudor domains.
Mol Cell. 2011 Nov 18;44(4):572-84. doi: 10.1016/j.molcel.2011.10.011.

引用本文的文献

1
Abundant piRNA production mediated by the GTSF1 homolog Tpp ensures Aubergine localization and germ plasm assembly.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2419375122. doi: 10.1073/pnas.2419375122. Epub 2025 Jun 10.
2
Origin and establishment of the germline in Drosophila melanogaster.
Genetics. 2025 Apr 17;229(4). doi: 10.1093/genetics/iyae217.
3
R-Methylation in Plants: A Key Regulator of Plant Development and Response to the Environment.
Int J Mol Sci. 2024 Sep 14;25(18):9937. doi: 10.3390/ijms25189937.
4
5
Spatial organization of translation and translational repression in two phases of germ granules.
Nat Commun. 2024 Sep 13;15(1):8020. doi: 10.1038/s41467-024-52346-x.
7
MIWI N-terminal arginines orchestrate generation of functional pachytene piRNAs and spermiogenesis.
Nucleic Acids Res. 2024 Jun 24;52(11):6558-6570. doi: 10.1093/nar/gkae193.
9
MIWI arginines orchestrate generation of functional pachytene piRNAs and spermiogenesis.
bioRxiv. 2024 Jan 1:2023.12.31.573779. doi: 10.1101/2023.12.31.573779.
10
Small RNAs, spermatogenesis, and male infertility: a decade of retrospect.
Reprod Biol Endocrinol. 2023 Nov 4;21(1):106. doi: 10.1186/s12958-023-01155-w.

本文引用的文献

1
A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila.
Nature. 2009 Oct 29;461(7268):1296-9. doi: 10.1038/nature08501. Epub 2009 Oct 7.
4
Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary.
Cell. 2009 May 1;137(3):522-35. doi: 10.1016/j.cell.2009.03.040. Epub 2009 Apr 23.
5
Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability.
Nat Cell Biol. 2009 May;11(5):652-8. doi: 10.1038/ncb1872. Epub 2009 Apr 19.
6
Tdrd6 is required for spermiogenesis, chromatoid body architecture, and regulation of miRNA expression.
Curr Biol. 2009 Apr 28;19(8):630-9. doi: 10.1016/j.cub.2009.02.047. Epub 2009 Apr 2.
7
RNA silencing in germlines--exquisite collaboration of Argonaute proteins with small RNAs for germline survival.
Curr Opin Cell Biol. 2009 Jun;21(3):426-34. doi: 10.1016/j.ceb.2009.02.003. Epub 2009 Mar 19.
8
Origins and Mechanisms of miRNAs and siRNAs.
Cell. 2009 Feb 20;136(4):642-55. doi: 10.1016/j.cell.2009.01.035.
9
Biogenesis of small RNAs in animals.
Nat Rev Mol Cell Biol. 2009 Feb;10(2):126-39. doi: 10.1038/nrm2632.
10
Small RNAs in transcriptional gene silencing and genome defence.
Nature. 2009 Jan 22;457(7228):413-20. doi: 10.1038/nature07756.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验