Suppr超能文献

严格偶联 CFTR 的催化循环及其 Cl- 离子通道门控揭示的开放通道爆发持续时间分布。

Strict coupling between CFTR's catalytic cycle and gating of its Cl- ion pore revealed by distributions of open channel burst durations.

机构信息

Department of Medical Biochemistry, Semmelweis University, Budapest H-1094, Hungary.

出版信息

Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1241-6. doi: 10.1073/pnas.0911061107. Epub 2009 Dec 4.

Abstract

CFTR, the ABC protein defective in cystic fibrosis, functions as an anion channel. Once phosphorylated by protein kinase A, a CFTR channel is opened and closed by events at its two cytosolic nucleotide binding domains (NBDs). Formation of a head-to-tail NBD1/NBD2 heterodimer, by ATP binding in two interfacial composite sites between conserved Walker A and B motifs of one NBD and the ABC-specific signature sequence of the other, has been proposed to trigger channel opening. ATP hydrolysis at the only catalytically competent interfacial site is suggested to then destabilize the NBD dimer and prompt channel closure. But this gating mechanism, and how tightly CFTR channel opening and closing are coupled to its catalytic cycle, remains controversial. Here we determine the distributions of open burst durations of individual CFTR channels, and use maximum likelihood to evaluate fits to equilibrium and nonequilibrium mechanisms and estimate the rate constants that govern channel closure. We examine partially and fully phosphorylated wild-type CFTR channels, and two mutant CFTR channels, each bearing a deleterious mutation in one or other composite ATP binding site. We show that the wild-type CFTR channel gating cycle is essentially irreversible and tightly coupled to the ATPase cycle, and that this coupling is completely destroyed by the NBD2 Walker B mutation D1370N but only partially disrupted by the NBD1 Walker A mutation K464A.

摘要

CFTR,囊性纤维化缺陷的 ABC 蛋白,作为阴离子通道发挥作用。一旦被蛋白激酶 A 磷酸化,CFTR 通道就会通过其两个胞质核苷酸结合域(NBD)的事件打开和关闭。通过在一个 NBD 的保守 Walker A 和 B 基序与另一个的 ABC 特异性特征序列之间的两个界面复合位点结合 ATP,形成头尾 NBD1/NBD2 异二聚体,被提议触发通道打开。然后,在唯一催化有效的界面位点进行 ATP 水解,被认为会使 NBD 二聚体失稳并促使通道关闭。但是,这种门控机制以及 CFTR 通道的打开和关闭与催化循环的紧密耦合仍然存在争议。在这里,我们确定了单个 CFTR 通道的开放突发持续时间的分布,并使用最大似然法评估了对平衡和非平衡机制的拟合,并估计了控制通道关闭的速率常数。我们检查了部分和完全磷酸化的野生型 CFTR 通道,以及两个突变 CFTR 通道,每个通道在一个或另一个复合 ATP 结合位点都带有有害突变。我们表明,野生型 CFTR 通道的门控循环基本上是不可逆的,并且与 ATP 酶循环紧密耦合,这种耦合完全被 NBD2 Walker B 突变 D1370N 破坏,但仅部分被 NBD1 Walker A 突变 K464A 破坏。

相似文献

1
Strict coupling between CFTR's catalytic cycle and gating of its Cl- ion pore revealed by distributions of open channel burst durations.
Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1241-6. doi: 10.1073/pnas.0911061107. Epub 2009 Dec 4.
3
On the mechanism of MgATP-dependent gating of CFTR Cl- channels.
J Gen Physiol. 2003 Jan;121(1):17-36. doi: 10.1085/jgp.20028673.
4
Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle.
J Gen Physiol. 2006 Nov;128(5):523-33. doi: 10.1085/jgp.200609558. Epub 2006 Oct 16.
6
Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel.
J Gen Physiol. 2010 May;135(5):399-414. doi: 10.1085/jgp.201010399.
7
Mutant cycles at CFTR's non-canonical ATP-binding site support little interface separation during gating.
J Gen Physiol. 2011 Jun;137(6):549-62. doi: 10.1085/jgp.201110608. Epub 2011 May 16.
8
CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains.
Nature. 2005 Feb 24;433(7028):876-80. doi: 10.1038/nature03313.

引用本文的文献

1
Structure of CFTR bound to (R)-BPO-27 unveils a pore-blockage mechanism.
Nat Commun. 2025 Aug 1;16(1):7059. doi: 10.1038/s41467-025-62199-7.
2
A fluorescent probe for the enzymatic activity of K.
bioRxiv. 2025 Jun 14:2025.06.10.658839. doi: 10.1101/2025.06.10.658839.
3
Structural determinants of protein kinase A essential for CFTR channel activation.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2407728121. doi: 10.1073/pnas.2407728121. Epub 2024 Nov 4.
4
Coupling enzymatic activity and gating in an ancient TRPM chanzyme and its molecular evolution.
Nat Struct Mol Biol. 2024 Oct;31(10):1509-1521. doi: 10.1038/s41594-024-01316-4. Epub 2024 May 21.
5
Structural basis for CFTR inhibition by CFTR-172.
Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2316675121. doi: 10.1073/pnas.2316675121. Epub 2024 Feb 29.
6
Structural identification of a selectivity filter in CFTR.
Proc Natl Acad Sci U S A. 2024 Feb 27;121(9):e2316673121. doi: 10.1073/pnas.2316673121. Epub 2024 Feb 21.
7
A review of the pathophysiology and the role of ion channels on bronchial asthma.
Front Pharmacol. 2023 Sep 28;14:1236550. doi: 10.3389/fphar.2023.1236550. eCollection 2023.
9
CFTR function, pathology and pharmacology at single-molecule resolution.
Nature. 2023 Apr;616(7957):606-614. doi: 10.1038/s41586-023-05854-7. Epub 2023 Mar 22.
10
Optimization of CFTR gating through the evolution of its extracellular loops.
J Gen Physiol. 2023 Apr 3;155(4). doi: 10.1085/jgp.202213264. Epub 2023 Feb 1.

本文引用的文献

1
Relationship between nucleotide binding and ion channel gating in cystic fibrosis transmembrane conductance regulator.
J Physiol. 2009 Jun 15;587(Pt 12):2875-86. doi: 10.1113/jphysiol.2009.170258. Epub 2009 Apr 29.
2
CLC-0 and CFTR: chloride channels evolved from transporters.
Physiol Rev. 2008 Apr;88(2):351-87. doi: 10.1152/physrev.00058.2006.
3
Structure and mechanism of ABC transporter proteins.
Curr Opin Struct Biol. 2007 Aug;17(4):412-8. doi: 10.1016/j.sbi.2007.07.003. Epub 2007 Aug 27.
5
Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle.
J Gen Physiol. 2006 Nov;128(5):523-33. doi: 10.1085/jgp.200609558. Epub 2006 Oct 16.
6
The occluded nucleotide conformation of p-glycoprotein.
J Bioenerg Biomembr. 2005 Dec;37(6):497-500. doi: 10.1007/s10863-005-9498-4.
7
Statistical evaluation of ion-channel gating models based on distributions of log-likelihood ratios.
Biophys J. 2006 May 15;90(10):3523-45. doi: 10.1529/biophysj.105.075135. Epub 2006 Feb 3.
8
CFTR gating II: Effects of nucleotide binding on the stability of open states.
J Gen Physiol. 2005 Apr;125(4):377-94. doi: 10.1085/jgp.200409228. Epub 2005 Mar 14.
9
CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains.
Nature. 2005 Feb 24;433(7028):876-80. doi: 10.1038/nature03313.
10
Formation of the productive ATP-Mg2+-bound dimer of GlcV, an ABC-ATPase from Sulfolobus solfataricus.
J Mol Biol. 2003 Nov 21;334(2):255-67. doi: 10.1016/j.jmb.2003.08.065.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验