Suppr超能文献

通过Sirt1/GCN5的酶活性实现营养物质对PGC-1α乙酰化状态和代谢功能的依赖性调节。

Nutrient-dependent regulation of PGC-1alpha's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5.

作者信息

Dominy John E, Lee Yoonjin, Gerhart-Hines Zachary, Puigserver Pere

机构信息

Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Biochim Biophys Acta. 2010 Aug;1804(8):1676-83. doi: 10.1016/j.bbapap.2009.11.023. Epub 2009 Dec 11.

Abstract

Mammals possess an intricate regulatory system for controlling flux through fuel utilization pathways in response to the dietary availability of particular macronutrients. Under fasting conditions, for instance, mammals initiate a whole body metabolic response that limits glucose utilization and favors fatty acid oxidation. Understanding the underlying mechanisms by which this process occurs will facilitate the development of new treatments for metabolic disorders such as type II diabetes and obesity. One of the recently identified components of the signal transduction pathway involved in metabolic reprogramming is PGC-1alpha. This transcriptional coactivator is able to coordinate the expression of a wide array of genes involved in glucose and fatty acid metabolism. The nutrient-mediated control of PGC-1alpha activity is tightly correlated with its acetylation state. In this review, we evaluate how the nutrient regulation of PGC-1alpha activity squares with the regulation of its acetylation state by the deacetylase Sirt1 and the acetyltransferase GCN5. We also propose an outline of additional experimental directives that will help to shed additional light on this very powerful transcriptional coactivator.

摘要

哺乳动物拥有一个复杂的调节系统,可根据特定常量营养素的饮食供应情况来控制燃料利用途径中的通量。例如,在禁食条件下,哺乳动物会启动全身代谢反应,限制葡萄糖利用并促进脂肪酸氧化。了解这一过程发生的潜在机制将有助于开发针对II型糖尿病和肥胖症等代谢紊乱的新疗法。参与代谢重编程的信号转导途径中最近发现的一个成分是PGC-1α。这种转录共激活因子能够协调参与葡萄糖和脂肪酸代谢的众多基因的表达。营养物质对PGC-1α活性的控制与其乙酰化状态密切相关。在这篇综述中,我们评估了PGC-1α活性的营养调节如何与脱乙酰酶Sirt1和乙酰转移酶GCN5对其乙酰化状态的调节相契合。我们还提出了额外的实验指导大纲,这将有助于进一步阐明这种非常强大的转录共激活因子。

相似文献

1
Nutrient-dependent regulation of PGC-1alpha's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5.
Biochim Biophys Acta. 2010 Aug;1804(8):1676-83. doi: 10.1016/j.bbapap.2009.11.023. Epub 2009 Dec 11.
2
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha.
EMBO J. 2007 Apr 4;26(7):1913-23. doi: 10.1038/sj.emboj.7601633. Epub 2007 Mar 8.
4
The impact of a 48-h fast on SIRT1 and GCN5 in human skeletal muscle.
Appl Physiol Nutr Metab. 2016 Sep;41(9):953-62. doi: 10.1139/apnm-2016-0130. Epub 2016 May 5.
5
GCN5-mediated transcriptional control of the metabolic coactivator PGC-1beta through lysine acetylation.
J Biol Chem. 2009 Jul 24;284(30):19945-52. doi: 10.1074/jbc.M109.015164. Epub 2009 Jun 2.
7
The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis.
Mol Cell. 2012 Dec 28;48(6):900-13. doi: 10.1016/j.molcel.2012.09.030. Epub 2012 Nov 8.
8
Deacetylation of PGC-1α by SIRT1: importance for skeletal muscle function and exercise-induced mitochondrial biogenesis.
Appl Physiol Nutr Metab. 2011 Oct;36(5):589-97. doi: 10.1139/h11-070. Epub 2011 Sep 2.
10
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1.
Nature. 2005 Mar 3;434(7029):113-8. doi: 10.1038/nature03354.

引用本文的文献

5
Oxidative phosphorylation and breast cancer progression: insights into PGC-1α's role in mitochondrial function.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Mar 17. doi: 10.1007/s00210-025-04018-w.
10
Altering heparan sulfate suppresses cell abnormalities and neuron loss in model of Alzheimer Disease.
iScience. 2024 Jul 2;27(7):110256. doi: 10.1016/j.isci.2024.110256. eCollection 2024 Jul 19.

本文引用的文献

1
Resveratrol is not a direct activator of SIRT1 enzyme activity.
Chem Biol Drug Des. 2009 Dec;74(6):619-24. doi: 10.1111/j.1747-0285.2009.00901.x. Epub 2009 Oct 20.
3
SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats.
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11288-93. doi: 10.1073/pnas.0812931106. Epub 2009 Jun 22.
4
5
Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters.
J Biol Chem. 2009 Jul 24;284(30):20408-17. doi: 10.1074/jbc.M109.016469. Epub 2009 May 28.
6
Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis.
Science. 2009 May 1;324(5927):651-4. doi: 10.1126/science.1171641. Epub 2009 Mar 19.
7
Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1.
Science. 2009 May 1;324(5927):654-7. doi: 10.1126/science.1170803. Epub 2009 Mar 12.
8
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.
Nature. 2009 Apr 23;458(7241):1056-60. doi: 10.1038/nature07813.
10
Carboxy-terminal phosphorylation of SIRT1 by protein kinase CK2.
Biochem Biophys Res Commun. 2009 Apr 10;381(3):372-7. doi: 10.1016/j.bbrc.2009.02.085. Epub 2009 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验