Suppr超能文献

T 细胞急性淋巴细胞白血病发病机制和药物敏感性的分子通路相互关联。

Interconnecting molecular pathways in the pathogenesis and drug sensitivity of T-cell acute lymphoblastic leukemia.

机构信息

Departments of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.

出版信息

Blood. 2010 Mar 4;115(9):1735-45. doi: 10.1182/blood-2009-07-235143. Epub 2009 Dec 9.

Abstract

To identify dysregulated pathways in distinct phases of NOTCH1-mediated T-cell leukemogenesis, as well as small-molecule inhibitors that could synergize with or substitute for gamma-secretase inhibitors (GSIs) in T-cell acute lymphoblastic leukemia (T-ALL) therapy, we compared gene expression profiles in a Notch1-induced mouse model of T-ALL with those in human T-ALL. The overall patterns of NOTCH1-mediated gene expression in human and mouse T-ALLs were remarkably similar, as defined early in transformation in the mouse by the regulation of MYC and its target genes and activation of nuclear factor-kappaB and PI3K/AKT pathways. Later events in murine Notch1-mediated leukemogenesis included down-regulation of genes encoding tumor suppressors and negative cell cycle regulators. Gene set enrichment analysis and connectivity map algorithm predicted that small-molecule inhibitors, including heat-shock protein 90, histone deacetylase, PI3K/AKT, and proteasome inhibitors, could reverse the gene expression changes induced by NOTCH1. When tested in vitro, histone deacetylase, PI3K and proteasome inhibitors synergized with GSI in suppressing T-ALL cell growth in GSI-sensitive cells. Interestingly, alvespimycin, a potent inhibitor of the heat-shock protein 90 molecular chaperone, markedly inhibited the growth of both GSI-sensitive and -resistant T-ALL cells, suggesting that its loss disrupts signal transduction pathways crucial for the growth and survival of T-ALL cells.

摘要

为了鉴定 NOTCH1 介导的 T 细胞白血病发生过程中失调的途径,以及在 T 细胞急性淋巴细胞白血病(T-ALL)治疗中能够与 γ-分泌酶抑制剂(GSIs)协同作用或替代其的小分子抑制剂,我们比较了 Notch1 诱导的 T-ALL 小鼠模型与人类 T-ALL 中的基因表达谱。NOTCH1 介导的人类和小鼠 T-ALL 中的基因表达的总体模式非常相似,在小鼠中,早期转化由 MYC 及其靶基因的调节以及核因子-kappaB 和 PI3K/AKT 途径的激活来定义。随后,在鼠 Notch1 介导的白血病发生中包括编码肿瘤抑制因子和负细胞周期调节剂的基因下调。基因集富集分析和连接图算法预测,小分子抑制剂,包括热休克蛋白 90、组蛋白去乙酰化酶、PI3K/AKT 和蛋白酶体抑制剂,可逆转 NOTCH1 诱导的基因表达变化。在体外进行测试时,组蛋白去乙酰化酶、PI3K 和蛋白酶体抑制剂与 GSI 协同作用抑制 GSI 敏感细胞中 T-ALL 细胞的生长。有趣的是,一种有效的热休克蛋白 90 分子伴侣抑制剂 alvespimycin 显著抑制 GSI 敏感和不敏感的 T-ALL 细胞的生长,表明其缺失破坏了对 T-ALL 细胞生长和存活至关重要的信号转导途径。

相似文献

1
Interconnecting molecular pathways in the pathogenesis and drug sensitivity of T-cell acute lymphoblastic leukemia.
Blood. 2010 Mar 4;115(9):1735-45. doi: 10.1182/blood-2009-07-235143. Epub 2009 Dec 9.
4
An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia.
Nat Genet. 2014 Apr;46(4):364-70. doi: 10.1038/ng.2913. Epub 2014 Mar 2.
7
Targeting the Notch1 and mTOR pathways in a mouse T-ALL model.
Blood. 2009 Jun 11;113(24):6172-81. doi: 10.1182/blood-2008-02-136762. Epub 2009 Feb 26.
8
PI3Kγ/δ and NOTCH1 Cross-Regulate Pathways That Define the T-cell Acute Lymphoblastic Leukemia Disease Signature.
Mol Cancer Ther. 2017 Oct;16(10):2069-2082. doi: 10.1158/1535-7163.MCT-17-0141. Epub 2017 Jul 17.
9
Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia.
Nat Med. 2009 Jan;15(1):50-8. doi: 10.1038/nm.1900. Epub 2008 Dec 21.
10
Recent advances on NOTCH signaling in T-ALL.
Curr Top Microbiol Immunol. 2012;360:163-82. doi: 10.1007/82_2012_232.

引用本文的文献

1
BCAT1 is a NOTCH1 target and sustains the oncogenic function of NOTCH1.
Haematologica. 2025 Feb 1;110(2):350-367. doi: 10.3324/haematol.2024.285552.
3
Proteomics analysis of histone deacetylase inhibitor-resistant solid tumors reveals resistant signatures and potential drug combinations.
Acta Pharmacol Sin. 2024 Jun;45(6):1305-1315. doi: 10.1038/s41401-024-01236-5. Epub 2024 Feb 21.
4
Epigenetically dysregulated NOTCH-Delta-HES signaling cascade can serve as a subtype classifier for acute lymphoblastic leukemia.
Ann Hematol. 2024 Feb;103(2):511-523. doi: 10.1007/s00277-023-05515-9. Epub 2023 Nov 3.
7
Targeting dual oncogenic machineries driven by TAL1 and PI3K-AKT pathways in T-cell acute lymphoblastic leukemia.
Haematologica. 2023 Feb 1;108(2):367-381. doi: 10.3324/haematol.2022.280761.
8
CPDR: An R Package of Recommending Personalized Drugs for Cancer Patients by Reversing the Individual's Disease-Related Signature.
Front Pharmacol. 2022 Jun 20;13:904909. doi: 10.3389/fphar.2022.904909. eCollection 2022.
10
Predicting chemosensitivity using drug perturbed gene dynamics.
BMC Bioinformatics. 2021 Jan 7;22(1):15. doi: 10.1186/s12859-020-03947-y.

本文引用的文献

1
High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia.
Blood. 2009 Jul 16;114(3):647-50. doi: 10.1182/blood-2009-02-206722. Epub 2009 May 20.
4
ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes.
Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):244-9. doi: 10.1073/pnas.0806445106. Epub 2008 Dec 31.
5
Oncogenesis of T-ALL and nonmalignant consequences of overexpressing intracellular NOTCH1.
J Exp Med. 2008 Nov 24;205(12):2851-61. doi: 10.1084/jem.20081561. Epub 2008 Nov 3.
6
Targeting Hsp90: small-molecule inhibitors and their clinical development.
Curr Opin Pharmacol. 2008 Aug;8(4):370-4. doi: 10.1016/j.coph.2008.06.015. Epub 2008 Jul 31.
7
The role of the PTEN/AKT Pathway in NOTCH1-induced leukemia.
Cell Cycle. 2008 Apr 15;7(8):965-70. doi: 10.4161/cc.7.8.5753. Epub 2008 Feb 19.
9
Mechanisms of transcription factor deregulation in lymphoid cell transformation.
Oncogene. 2007 Oct 15;26(47):6838-49. doi: 10.1038/sj.onc.1210766.
10
Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia.
Nat Med. 2007 Oct;13(10):1203-10. doi: 10.1038/nm1636. Epub 2007 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验