Suppr超能文献

雷帕霉素改善条件性 Pkd1 基因敲除引起的 PKD。

Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1.

机构信息

Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9610, USA.

出版信息

J Am Soc Nephrol. 2010 Mar;21(3):489-97. doi: 10.1681/ASN.2009040421. Epub 2010 Jan 14.

Abstract

Aberrant activation of the mammalian target of rapamycin (mTOR) pathway occurs in polycystic kidney disease (PKD). mTOR inhibitors, such as rapamycin, are highly effective in several rodent models of PKD, but these models result from mutations in genes other than Pkd1 and Pkd2, which are the primary genes responsible for human autosomal dominant PKD. To address this limitation, we tested the efficacy of rapamycin in a mouse model that results from conditional inactivation of Pkd1. Mosaic deletion of Pkd1 resulted in PKD and replicated characteristic features of human PKD including aberrant mTOR activation, epithelial proliferation and apoptosis, and progressive fibrosis. Treatment with rapamycin was highly effective: It reduced cyst growth, preserved renal function, inhibited epithelial cell proliferation, increased apoptosis of cyst-lining cells, and inhibited fibrosis. These data provide in vivo evidence that rapamycin is effective in a human-orthologous mouse model of PKD.

摘要

哺乳动物雷帕霉素靶蛋白(mTOR)途径的异常激活发生在多囊肾病(PKD)中。雷帕霉素等 mTOR 抑制剂在几种 PKD 的啮齿动物模型中非常有效,但这些模型是由 Pkd1 和 Pkd2 以外的基因突变引起的,而 Pkd1 和 Pkd2 是导致常染色体显性遗传 PKD 的主要基因。为了解决这一限制,我们在一种由 Pkd1 条件性失活引起的小鼠模型中测试了雷帕霉素的疗效。Pkd1 的镶嵌缺失导致 PKD,并复制了人类 PKD 的特征,包括异常的 mTOR 激活、上皮细胞增殖和凋亡以及进行性纤维化。雷帕霉素治疗非常有效:它减少了囊肿生长,保留了肾功能,抑制了上皮细胞增殖,增加了囊壁细胞的凋亡,并抑制了纤维化。这些数据提供了体内证据,表明雷帕霉素在人类同源的 PKD 小鼠模型中有效。

相似文献

1
Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1.
J Am Soc Nephrol. 2010 Mar;21(3):489-97. doi: 10.1681/ASN.2009040421. Epub 2010 Jan 14.
2
A study of sirolimus and mTOR kinase inhibitor in a hypomorphic mouse model of autosomal dominant polycystic kidney disease.
Am J Physiol Renal Physiol. 2019 Jul 1;317(1):F187-F196. doi: 10.1152/ajprenal.00051.2019. Epub 2019 May 1.
4
Ablation of Long Noncoding RNA Hoxb3os Exacerbates Cystogenesis in Mouse Polycystic Kidney Disease.
J Am Soc Nephrol. 2024 Jan 1;35(1):41-55. doi: 10.1681/ASN.0000000000000265. Epub 2023 Nov 13.
6
Aquaporin-3 deficiency slows cyst enlargement in experimental mouse models of autosomal dominant polycystic kidney disease.
FASEB J. 2019 May;33(5):6185-6196. doi: 10.1096/fj.201801338RRR. Epub 2019 Feb 15.
7
Comparison of folate-conjugated rapamycin versus unconjugated rapamycin in an orthologous mouse model of polycystic kidney disease.
Am J Physiol Renal Physiol. 2018 Aug 1;315(2):F395-F405. doi: 10.1152/ajprenal.00057.2018. Epub 2018 May 2.
8
An mTOR anti-sense oligonucleotide decreases polycystic kidney disease in mice with a targeted mutation in Pkd2.
Hum Mol Genet. 2014 Sep 15;23(18):4919-31. doi: 10.1093/hmg/ddu208. Epub 2014 May 8.
9
Integrin-Linked Kinase Signaling Promotes Cyst Growth and Fibrosis in Polycystic Kidney Disease.
J Am Soc Nephrol. 2017 Sep;28(9):2708-2719. doi: 10.1681/ASN.2016111235. Epub 2017 May 18.

引用本文的文献

1
Therapies in autosomal dominant polycystic kidney disease: beyond tolvaptan.
Curr Opin Nephrol Hypertens. 2025 Sep 1;34(5):368-374. doi: 10.1097/MNH.0000000000001101. Epub 2025 Jul 4.
2
Autosomal Dominant Polycystic Kidney Disease: From Pathogenesis to Organoid Disease Models.
Biomedicines. 2025 Jul 18;13(7):1766. doi: 10.3390/biomedicines13071766.
3
Targeting interleukin-1 signaling for renoprotection.
Front Immunol. 2025 May 23;16:1591197. doi: 10.3389/fimmu.2025.1591197. eCollection 2025.
5
Physiologic mechanisms underlying polycystic kidney disease.
Physiol Rev. 2025 Jul 1;105(3):1553-1607. doi: 10.1152/physrev.00018.2024. Epub 2025 Feb 12.
6
β-hydroxybutyrate recapitulates the beneficial effects of ketogenic metabolic therapy in polycystic kidney disease.
iScience. 2024 Aug 20;27(9):110773. doi: 10.1016/j.isci.2024.110773. eCollection 2024 Sep 20.
9
Reprogramming of Energy Metabolism in Human Polycystic Kidney Disease: A Systems Biology Analysis.
Int J Mol Sci. 2024 Jun 29;25(13):7173. doi: 10.3390/ijms25137173.
10
Rapamycin-encapsulated nanoparticle delivery in polycystic kidney disease mice.
Sci Rep. 2024 Jul 2;14(1):15140. doi: 10.1038/s41598-024-65830-7.

本文引用的文献

3
Long-term rapamycin therapy in the Han:SPRD rat model of polycystic kidney disease (PKD).
Nephrol Dial Transplant. 2009 Aug;24(8):2349-53. doi: 10.1093/ndt/gfp129. Epub 2009 Mar 25.
4
Activation of the AKT/mTOR pathway in autosomal recessive polycystic kidney disease (ARPKD).
Nephrol Dial Transplant. 2009 Jun;24(6):1819-27. doi: 10.1093/ndt/gfn744. Epub 2009 Jan 28.
5
Deficiency of FLCN in mouse kidney led to development of polycystic kidneys and renal neoplasia.
PLoS One. 2008;3(10):e3581. doi: 10.1371/journal.pone.0003581. Epub 2008 Oct 30.
6
Pkd1 inactivation induced in adulthood produces focal cystic disease.
J Am Soc Nephrol. 2008 Dec;19(12):2351-63. doi: 10.1681/ASN.2007101139. Epub 2008 Sep 5.
7
Mammalian target of rapamycin and caspase inhibitors in polycystic kidney disease.
Clin J Am Soc Nephrol. 2008 Jul;3(4):1219-26. doi: 10.2215/CJN.05611207.
8
Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex.
Ann Neurol. 2008 Apr;63(4):444-53. doi: 10.1002/ana.21331.
9
Sirolimus reduces polycystic liver volume in ADPKD patients.
J Am Soc Nephrol. 2008 Mar;19(3):631-8. doi: 10.1681/ASN.2007050626. Epub 2008 Jan 16.
10
Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis.
N Engl J Med. 2008 Jan 10;358(2):140-51. doi: 10.1056/NEJMoa063564.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验