Suppr超能文献

兴奋性和抑制性突触的大小和数量的协调导致在长时程增强期间成熟海马 CA1 树突的平衡结构可塑性。

Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP.

机构信息

Center for Learning and Memory, Section of Neurobiology, Institute for Neuroscience, University of Texas, Austin, Texas 78712, USA.

出版信息

Hippocampus. 2011 Apr;21(4):354-73. doi: 10.1002/hipo.20768.

Abstract

Enlargement of dendritic spines and synapses correlates with enhanced synaptic strength during long-term potentiation (LTP), especially in immature hippocampal neurons. Less clear is the nature of this structural synaptic plasticity on mature hippocampal neurons, and nothing is known about the structural plasticity of inhibitory synapses during LTP. Here the timing and extent of structural synaptic plasticity and changes in local protein synthesis evidenced by polyribosomes were systematically evaluated at both excitatory and inhibitory synapses on CA1 dendrites from mature rats following induction of LTP with theta-burst stimulation (TBS). Recent work suggests dendritic segments can act as functional units of plasticity. To test whether structural synaptic plasticity is similarly coordinated, we reconstructed from serial section transmission electron microscopy all of the spines and synapses along representative dendritic segments receiving control stimulation or TBS-LTP. At 5 min after TBS, polyribosomes were elevated in large spines suggesting an initial burst of local protein synthesis, and by 2 h only those spines with further enlarged synapses contained polyribosomes. Rapid induction of synaptogenesis was evidenced by an elevation in asymmetric shaft synapses and stubby spines at 5 min and more nonsynaptic filopodia at 30 min. By 2 h, the smallest synaptic spines were markedly reduced in number. This synapse loss was perfectly counterbalanced by enlargement of the remaining excitatory synapses such that the summed synaptic surface area per length of dendritic segment was constant across time and conditions. Remarkably, the inhibitory synapses showed a parallel synaptic plasticity, also demonstrating a decrease in number perfectly counterbalanced by an increase in synaptic surface area. Thus, TBS-LTP triggered spinogenesis followed by loss of small excitatory and inhibitory synapses and a subsequent enlargement of the remaining synapses by 2 h. These data suggest that dendritic segments coordinate structural plasticity across multiple synapses and maintain a homeostatic balance of excitatory and inhibitory inputs through local protein-synthesis and selective capture or redistribution of dendritic resources.

摘要

树突棘和突触的增大与长时程增强 (LTP) 期间突触强度的增强相关,尤其是在不成熟的海马神经元中。不太清楚成熟海马神经元中这种结构突触可塑性的性质,也不知道 LTP 期间抑制性突触的结构可塑性。在这里,通过多核糖体系统地评估了在 theta 爆发刺激 (TBS) 诱导 LTP 后,来自成熟大鼠 CA1 树突上兴奋性和抑制性突触的结构突触可塑性和局部蛋白质合成的变化。最近的工作表明,树突段可以作为可塑性的功能单位。为了测试结构突触可塑性是否具有相似的协调性,我们从连续切片透射电子显微镜重建了在接受对照刺激或 TBS-LTP 的代表性树突段上接收刺激的所有棘突和突触。在 TBS 后 5 分钟,多核糖体在大棘突中升高,表明局部蛋白质合成的初始爆发,并且在 2 小时内,只有那些进一步扩大的突触的棘突包含多核糖体。在 5 分钟时,不对称轴突突触和短棘突的升高以及更多的非突触丝状伪足的升高证明了快速诱导的突触发生,在 30 分钟时更明显。在 2 小时时,最小的突触棘突数量明显减少。这种突触丢失被剩余兴奋性突触的增大完美地平衡,使得突触表面积的总和与树突段的长度成比例,并且在整个时间和条件下保持不变。值得注意的是,抑制性突触显示出平行的突触可塑性,也显示出数量的减少与突触表面积的增加完全平衡。因此,TBS-LTP 在 2 小时内引发棘突生成,随后小的兴奋性和抑制性突触丢失,剩余突触随后增大。这些数据表明,树突段通过局部蛋白质合成和树突资源的选择性捕获或重新分配,协调多个突触的结构可塑性,并维持兴奋性和抑制性输入的平衡。

相似文献

2
Shifting patterns of polyribosome accumulation at synapses over the course of hippocampal long-term potentiation.
Hippocampus. 2018 Jun;28(6):416-430. doi: 10.1002/hipo.22841. Epub 2018 Apr 16.
3
LTP enhances synaptogenesis in the developing hippocampus.
Hippocampus. 2016 May;26(5):560-76. doi: 10.1002/hipo.22536. Epub 2015 Oct 23.
4
Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells.
Neuropharmacology. 2011 Apr;60(5):757-64. doi: 10.1016/j.neuropharm.2010.12.014. Epub 2010 Dec 25.

引用本文的文献

2
Presynaptic vesicles supply membrane for axonal bouton enlargement during LTP.
bioRxiv. 2025 May 2:2025.04.29.651313. doi: 10.1101/2025.04.29.651313.
3
Neuronal Synaptic Communication and Mitochondrial Energetics in Human Health and Disease.
Adv Exp Med Biol. 2025;1477:105-137. doi: 10.1007/978-3-031-89525-8_5.
4
Decoding the complex journeys of RNAs along neurons.
Nucleic Acids Res. 2025 Apr 10;53(7). doi: 10.1093/nar/gkaf293.
6
Laser microsurgery for presynaptic interrogation.
Nat Protoc. 2025 Feb 7. doi: 10.1038/s41596-024-01125-5.
8
A synapse-specific refractory period for plasticity at individual dendritic spines.
Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2410433122. doi: 10.1073/pnas.2410433122. Epub 2025 Jan 7.
9
Experience-driven competition in neural reorganization after stroke.
J Physiol. 2025 Feb;603(3):737-757. doi: 10.1113/JP285565. Epub 2024 Oct 30.

本文引用的文献

1
Experience-dependent compartmentalized dendritic plasticity in rat hippocampal CA1 pyramidal neurons.
Nat Neurosci. 2009 Dec;12(12):1485-7. doi: 10.1038/nn.2428. Epub 2009 Nov 8.
2
Behaviorally evoked transient reorganization of hippocampal spines.
Eur J Neurosci. 2009 Aug;30(4):560-6. doi: 10.1111/j.1460-9568.2009.06860.x. Epub 2009 Aug 10.
3
Long-term potentiation in isolated dendritic spines.
PLoS One. 2009 Jun 23;4(6):e6021. doi: 10.1371/journal.pone.0006021.
4
Subcellular dynamics of type II PKA in neurons.
Neuron. 2009 May 14;62(3):363-74. doi: 10.1016/j.neuron.2009.03.013.
6
Activation of CaMKII in single dendritic spines during long-term potentiation.
Nature. 2009 Mar 19;458(7236):299-304. doi: 10.1038/nature07842.
7
Experience-dependent, rapid structural changes in hippocampal pyramidal cell spines.
Cereb Cortex. 2009 Nov;19(11):2572-8. doi: 10.1093/cercor/bhp012. Epub 2009 Feb 24.
8
9
Strength through diversity.
Neuron. 2008 Nov 6;60(3):477-82. doi: 10.1016/j.neuron.2008.10.020.
10
Silent synapses and the emergence of a postsynaptic mechanism for LTP.
Nat Rev Neurosci. 2008 Nov;9(11):813-25. doi: 10.1038/nrn2501. Epub 2008 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验