Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA.
Biochemistry. 2010 Mar 9;49(9):2031-41. doi: 10.1021/bi9020988.
Glycocyamine kinase (GK), a member of the phosphagen kinase family, catalyzes the Mg(2+)-dependent reversible phosphoryl group transfer of the N-phosphoryl group of phosphoglycocyamine to ADP to yield glycocyamine and ATP. This reaction helps to maintain the energy homeostasis of the cell in some multicelullar organisms that encounter high and variable energy turnover. GK from the marine worm Namalycastis sp. is heterodimeric, with two homologous polypeptide chains, alpha and beta, derived from a common pre-mRNA by mutually exclusive N-terminal alternative exons. The N-terminal exon of GKbeta encodes a peptide that is different in sequence and is 16 amino acids longer than that encoded by the N-terminal exon of GKalpha. The crystal structures of recombinant GKalphabeta and GKbetabeta from Namalycastis sp. were determined at 2.6 and 2.4 A resolution, respectively. In addition, the structure of the GKbetabeta was determined at 2.3 A resolution in complex with a transition state analogue, Mg(2+)-ADP-NO(3)(-)-glycocyamine. Consistent with the sequence homology, the GK subunits adopt the same overall fold as that of other phosphagen kinases of known structure (the homodimeric creatine kinase (CK) and the monomeric arginine kinase (AK)). As with CK, the GK N-termini mediate the dimer interface. In both heterodimeric and homodimeric GK forms, the conformations of the two N-termini are asymmetric, and the asymmetry is different than that reported previously for the homodimeric CKs from several organisms. The entire polypeptide chains of GKalphabeta are structurally defined, and the longer N-terminus of the beta subunit is anchored at the dimer interface. In GKbetabeta the 24 N-terminal residues of one subunit and 11 N-terminal residues of the second subunit are disordered. This observation is consistent with a proposal that the GKalphabeta amino acids involved in the interface formation were optimized once a heterodimer emerged as the physiological form of the enzyme. As a consequence, the homodimer interface (either solely alpha or solely beta chains) has been corrupted. In the unbound state, GK exhibits an open conformation analogous to that observed with ligand-free CK or AK. Upon binding the transition state analogue, both subunits of GK undergo the same closure motion that clasps the transition state analogue, in contrast to the transition state analogue complexes of CK, where the corresponding transition state analogue occupies only one subunit, which undergoes domain closure. The active site environments of the GK, CK, and AK at the bound states reveal the structural determinants of substrate specificity. Despite the equivalent binding in both active sites of the GK dimer, the conformational asymmetry of the N-termini is retained. Thus, the coupling between the structural asymmetry and negative cooperativity previously proposed for CK is not supported in the case of GK.
糖核酸激酶(GK)是磷酸肌酸激酶家族的成员,能够催化磷酸糖核酸的 N-磷酸基上的 Mg2+依赖的可逆磷酸基团转移到 ADP 上,生成糖核酸和 ATP。这一反应有助于维持某些多细胞生物细胞的能量平衡,这些生物的能量转换率很高且变化很大。来自海洋蠕虫 Namalycastis sp. 的 GK 是异二聚体,由两条同源多肽链,即 alpha 和 beta 组成,它们由一个共同的前 mRNA 通过相互排斥的 N 端选择性外显子衍生而来。GKbeta 的 N 端外显子编码一个序列不同且比 GKalpha 的 N 端外显子长 16 个氨基酸的肽。来自 Namalycastis sp. 的重组 GKalphabeta 和 GKbetabeta 的晶体结构分别在 2.6 和 2.4 Å分辨率下确定。此外,在 2.3 Å分辨率下确定了 GKbetabeta 与过渡态类似物 Mg2+-ADP-NO3(-)-糖核酸复合物的结构。与序列同源性一致,GK 亚基采用与其他已知结构的磷酸肌酸激酶(同工型肌酸激酶(CK)和单体精氨酸激酶(AK))相同的整体折叠。与 CK 一样,GK 的 N 末端介导二聚体界面。在异二聚体和同二聚体 GK 形式中,两个 N 末端的构象不对称,这种不对称性与先前报道的几种生物体的同二聚体 CKs 不同。GKalphabeta 的整个多肽链结构都得到了明确的定义,并且 beta 亚基的较长 N 末端固定在二聚体界面上。在 GKbetabeta 中,一个亚基的 24 个 N 端残基和第二个亚基的 11 个 N 端残基无序。这一观察结果与以下假设一致,即与界面形成有关的 GKalphabeta 氨基酸一旦作为酶的生理形式出现,就会被优化。因此,同二聚体界面(要么是纯 alpha 链,要么是纯 beta 链)已经被破坏。在无配体状态下,GK 表现出类似于配体游离 CK 或 AK 的开放构象。结合过渡态类似物后,GK 的两个亚基都经历相同的闭合运动,将过渡态类似物扣紧,与 CK 的过渡态类似物复合物形成对比,其中相应的过渡态类似物仅占据一个亚基,该亚基经历结构域闭合。结合状态下的 GK、CK 和 AK 的活性位点环境揭示了底物特异性的结构决定因素。尽管 GK 二聚体的两个活性位点都有等效的结合,但 N 末端的构象不对称性仍然保留。因此,对于 CK 提出的结构不对称性和负协同作用之间的耦合在 GK 的情况下并不支持。