Suppr超能文献

糖胺激酶结构基础:磷酸原激酶家族成员的作用机制和底物特异性。

Structural basis for the mechanism and substrate specificity of glycocyamine kinase, a phosphagen kinase family member.

机构信息

Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA.

出版信息

Biochemistry. 2010 Mar 9;49(9):2031-41. doi: 10.1021/bi9020988.

Abstract

Glycocyamine kinase (GK), a member of the phosphagen kinase family, catalyzes the Mg(2+)-dependent reversible phosphoryl group transfer of the N-phosphoryl group of phosphoglycocyamine to ADP to yield glycocyamine and ATP. This reaction helps to maintain the energy homeostasis of the cell in some multicelullar organisms that encounter high and variable energy turnover. GK from the marine worm Namalycastis sp. is heterodimeric, with two homologous polypeptide chains, alpha and beta, derived from a common pre-mRNA by mutually exclusive N-terminal alternative exons. The N-terminal exon of GKbeta encodes a peptide that is different in sequence and is 16 amino acids longer than that encoded by the N-terminal exon of GKalpha. The crystal structures of recombinant GKalphabeta and GKbetabeta from Namalycastis sp. were determined at 2.6 and 2.4 A resolution, respectively. In addition, the structure of the GKbetabeta was determined at 2.3 A resolution in complex with a transition state analogue, Mg(2+)-ADP-NO(3)(-)-glycocyamine. Consistent with the sequence homology, the GK subunits adopt the same overall fold as that of other phosphagen kinases of known structure (the homodimeric creatine kinase (CK) and the monomeric arginine kinase (AK)). As with CK, the GK N-termini mediate the dimer interface. In both heterodimeric and homodimeric GK forms, the conformations of the two N-termini are asymmetric, and the asymmetry is different than that reported previously for the homodimeric CKs from several organisms. The entire polypeptide chains of GKalphabeta are structurally defined, and the longer N-terminus of the beta subunit is anchored at the dimer interface. In GKbetabeta the 24 N-terminal residues of one subunit and 11 N-terminal residues of the second subunit are disordered. This observation is consistent with a proposal that the GKalphabeta amino acids involved in the interface formation were optimized once a heterodimer emerged as the physiological form of the enzyme. As a consequence, the homodimer interface (either solely alpha or solely beta chains) has been corrupted. In the unbound state, GK exhibits an open conformation analogous to that observed with ligand-free CK or AK. Upon binding the transition state analogue, both subunits of GK undergo the same closure motion that clasps the transition state analogue, in contrast to the transition state analogue complexes of CK, where the corresponding transition state analogue occupies only one subunit, which undergoes domain closure. The active site environments of the GK, CK, and AK at the bound states reveal the structural determinants of substrate specificity. Despite the equivalent binding in both active sites of the GK dimer, the conformational asymmetry of the N-termini is retained. Thus, the coupling between the structural asymmetry and negative cooperativity previously proposed for CK is not supported in the case of GK.

摘要

糖核酸激酶(GK)是磷酸肌酸激酶家族的成员,能够催化磷酸糖核酸的 N-磷酸基上的 Mg2+依赖的可逆磷酸基团转移到 ADP 上,生成糖核酸和 ATP。这一反应有助于维持某些多细胞生物细胞的能量平衡,这些生物的能量转换率很高且变化很大。来自海洋蠕虫 Namalycastis sp. 的 GK 是异二聚体,由两条同源多肽链,即 alpha 和 beta 组成,它们由一个共同的前 mRNA 通过相互排斥的 N 端选择性外显子衍生而来。GKbeta 的 N 端外显子编码一个序列不同且比 GKalpha 的 N 端外显子长 16 个氨基酸的肽。来自 Namalycastis sp. 的重组 GKalphabeta 和 GKbetabeta 的晶体结构分别在 2.6 和 2.4 Å分辨率下确定。此外,在 2.3 Å分辨率下确定了 GKbetabeta 与过渡态类似物 Mg2+-ADP-NO3(-)-糖核酸复合物的结构。与序列同源性一致,GK 亚基采用与其他已知结构的磷酸肌酸激酶(同工型肌酸激酶(CK)和单体精氨酸激酶(AK))相同的整体折叠。与 CK 一样,GK 的 N 末端介导二聚体界面。在异二聚体和同二聚体 GK 形式中,两个 N 末端的构象不对称,这种不对称性与先前报道的几种生物体的同二聚体 CKs 不同。GKalphabeta 的整个多肽链结构都得到了明确的定义,并且 beta 亚基的较长 N 末端固定在二聚体界面上。在 GKbetabeta 中,一个亚基的 24 个 N 端残基和第二个亚基的 11 个 N 端残基无序。这一观察结果与以下假设一致,即与界面形成有关的 GKalphabeta 氨基酸一旦作为酶的生理形式出现,就会被优化。因此,同二聚体界面(要么是纯 alpha 链,要么是纯 beta 链)已经被破坏。在无配体状态下,GK 表现出类似于配体游离 CK 或 AK 的开放构象。结合过渡态类似物后,GK 的两个亚基都经历相同的闭合运动,将过渡态类似物扣紧,与 CK 的过渡态类似物复合物形成对比,其中相应的过渡态类似物仅占据一个亚基,该亚基经历结构域闭合。结合状态下的 GK、CK 和 AK 的活性位点环境揭示了底物特异性的结构决定因素。尽管 GK 二聚体的两个活性位点都有等效的结合,但 N 末端的构象不对称性仍然保留。因此,对于 CK 提出的结构不对称性和负协同作用之间的耦合在 GK 的情况下并不支持。

相似文献

2
Isolation, characterization, and cDNA-derived amino acid sequence of glycocyamine kinase from the tropical marine worm Namalycastis sp.
Comp Biochem Physiol B Biochem Mol Biol. 2005 Mar;140(3):387-93. doi: 10.1016/j.cbpc.2004.11.001.
4
Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity.
FASEB J. 2010 Jan;24(1):242-52. doi: 10.1096/fj.09-140194. Epub 2009 Sep 25.
5
Origin and properties of cytoplasmic and mitochondrial isoforms of taurocyamine kinase.
FEBS J. 2005 Jul;272(14):3521-30. doi: 10.1111/j.1742-4658.2005.04767.x.
7
The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
Int J Biol Macromol. 2009 Jun 1;44(5):413-8. doi: 10.1016/j.ijbiomac.2009.03.001. Epub 2009 Mar 14.
8
Role of amino-acid residue 95 in substrate specificity of phosphagen kinases.
FEBS Lett. 2004 Aug 27;573(1-3):78-82. doi: 10.1016/j.febslet.2004.07.061.
10
Evolution of the cytoplasmic and mitochondrial phosphagen kinases unique to annelid groups.
J Mol Evol. 2007 Nov;65(5):616-25. doi: 10.1007/s00239-007-9046-4. Epub 2007 Oct 12.

引用本文的文献

1
Structural insights into the regulation of protein-arginine kinase McsB by McsA.
Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2320312121. doi: 10.1073/pnas.2320312121. Epub 2024 Apr 16.
2
Unexpected Single-Ligand Occupancy and Negative Cooperativity in the SARS-CoV-2 Main Protease.
J Chem Inf Model. 2024 Feb 12;64(3):892-904. doi: 10.1021/acs.jcim.3c01497. Epub 2023 Dec 5.
3
Natural Products Containing 'Rare' Organophosphorus Functional Groups.
Molecules. 2019 Feb 28;24(5):866. doi: 10.3390/molecules24050866.
4
Elevated μs-ms timescale backbone dynamics in the transition state analog form of arginine kinase.
J Struct Biol. 2017 Dec;200(3):258-266. doi: 10.1016/j.jsb.2017.05.002. Epub 2017 May 8.
5
Cellular bioenergetics of guanidinoacetic acid: the role of mitochondria.
J Bioenerg Biomembr. 2015 Oct;47(5):369-72. doi: 10.1007/s10863-015-9619-7. Epub 2015 Aug 9.
6
The substrate-free and -bound crystal structures of the duplicated taurocyamine kinase from the human parasite Schistosoma mansoni.
J Biol Chem. 2015 May 15;290(20):12951-63. doi: 10.1074/jbc.M114.628909. Epub 2015 Apr 2.
7
Crystal structures of carbamate kinase from Giardia lamblia bound with citric acid and AMP-PNP.
PLoS One. 2013 May 20;8(5):e64004. doi: 10.1371/journal.pone.0064004. Print 2013.
8
Crystal structures of arginine kinase in complex with ADP, nitrate, and various phosphagen analogs.
Biochem Biophys Res Commun. 2012 Oct 12;427(1):212-7. doi: 10.1016/j.bbrc.2012.09.053. Epub 2012 Sep 17.
9
The structure of lombricine kinase: implications for phosphagen kinase conformational changes.
J Biol Chem. 2011 Mar 18;286(11):9338-50. doi: 10.1074/jbc.M110.202796. Epub 2011 Jan 6.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Structural studies of human brain-type creatine kinase complexed with the ADP-Mg2+-NO3- -creatine transition-state analogue complex.
FEBS Lett. 2008 Nov 26;582(28):3959-65. doi: 10.1016/j.febslet.2008.10.039. Epub 2008 Oct 31.
3
Raster3D: photorealistic molecular graphics.
Methods Enzymol. 1997;277:505-24. doi: 10.1016/s0076-6879(97)77028-9.
4
Changing the substrate specificity of creatine kinase from creatine to glycocyamine: evidence for a highly evolved active site.
Biochim Biophys Acta. 2007 Dec;1774(12):1519-27. doi: 10.1016/j.bbapap.2007.10.001. Epub 2007 Oct 12.
5
Evolution of the cytoplasmic and mitochondrial phosphagen kinases unique to annelid groups.
J Mol Evol. 2007 Nov;65(5):616-25. doi: 10.1007/s00239-007-9046-4. Epub 2007 Oct 12.
6
Kinetic analysis of two purified forms of arginine kinase: absence of cooperativity in substrate binding of dimeric phosphagen kinase.
Comp Biochem Physiol B Biochem Mol Biol. 2007 Sep;148(1):6-13. doi: 10.1016/j.cbpb.2007.03.016. Epub 2007 May 13.
7
Structural asymmetry and intersubunit communication in muscle creatine kinase.
Acta Crystallogr D Biol Crystallogr. 2007 Mar;63(Pt 3):381-9. doi: 10.1107/S0907444906056204. Epub 2007 Feb 21.
9
Loop movement and catalysis in creatine kinase.
IUBMB Life. 2005 Apr-May;57(4-5):355-62. doi: 10.1080/15216540500091999.
10
Scoredist: a simple and robust protein sequence distance estimator.
BMC Bioinformatics. 2005 Apr 27;6:108. doi: 10.1186/1471-2105-6-108.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验