Suppr超能文献

精氨酸激酶与 ADP、硝酸盐和各种磷酸原类似物复合物的晶体结构。

Crystal structures of arginine kinase in complex with ADP, nitrate, and various phosphagen analogs.

机构信息

Institute of Molecular Biophysics, Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306-4380, USA.

出版信息

Biochem Biophys Res Commun. 2012 Oct 12;427(1):212-7. doi: 10.1016/j.bbrc.2012.09.053. Epub 2012 Sep 17.

Abstract

Arginine kinase catalyzes the reversible transfer of a phosphoryl group between ATP and l-arginine and is a monomeric homolog of the human enzyme creatine kinase. Arginine and creatine kinases belongs to the phosphagen kinase family of enzymes, which consists of eight known members, each of which is specific for its own phosphagen. Here, the source of phosphagen specificity in arginine kinase is investigated through the use of phosphagen analogs. Crystal structures have been determined for Limulus polyphemus arginine kinase with one of four arginine analogs bound in a transition state analog complex: l-ornithine, l-citrulline, imino-l-ornithine, and d-arginine. In all complexes, the enzyme achieves a closed conformation very similar to that of the cognate transition state analog complex, but differences are observed in the configurations of bound ligands. Arginine kinase exhibits no detectable activity towards ornithine, citrulline, or imino-l-ornithine, and only trace activity towards d-arginine. The crystal structures presented here demonstrate that phosphagen specificity is derived neither from a lock-and-key mechanism nor a modulation of induced-fit conformational changes, but potentially from subtle distortions in bound substrate configurations.

摘要

精氨酸激酶催化 ATP 和 l-精氨酸之间磷酸基团的可逆转移,是人类肌酸激酶的单体同源物。精氨酸激酶和肌酸激酶属于磷酸原激酶家族的酶,该家族由 8 个已知成员组成,每个成员都对其自身的磷酸原具有特异性。在这里,通过使用磷酸原类似物研究了精氨酸激酶中磷酸原特异性的来源。已经确定了四种精氨酸类似物之一结合在过渡态类似物复合物中的 Limulus polyphemus 精氨酸激酶的晶体结构:l-鸟氨酸、l-瓜氨酸、亚氨基-l-鸟氨酸和 d-精氨酸。在所有复合物中,酶都达到了与天然过渡态类似物复合物非常相似的封闭构象,但结合配体的构型存在差异。精氨酸激酶对鸟氨酸、瓜氨酸或亚氨基-l-鸟氨酸没有检测到可检测的活性,对 d-精氨酸只有微量活性。这里呈现的晶体结构表明,磷酸原特异性既不是来自锁钥机制,也不是诱导契合构象变化的调节,而是可能来自结合底物构型的细微扭曲。

相似文献

1
Crystal structures of arginine kinase in complex with ADP, nitrate, and various phosphagen analogs.
Biochem Biophys Res Commun. 2012 Oct 12;427(1):212-7. doi: 10.1016/j.bbrc.2012.09.053. Epub 2012 Sep 17.
3
The role of phosphagen specificity loops in arginine kinase.
Protein Sci. 2004 Mar;13(3):575-85. doi: 10.1110/ps.03428304.
4
Arginine kinase: joint crystallographic and NMR RDC analyses link substrate-associated motions to intrinsic flexibility.
J Mol Biol. 2011 Jan 14;405(2):479-96. doi: 10.1016/j.jmb.2010.11.007. Epub 2010 Nov 12.
5
Elevated μs-ms timescale backbone dynamics in the transition state analog form of arginine kinase.
J Struct Biol. 2017 Dec;200(3):258-266. doi: 10.1016/j.jsb.2017.05.002. Epub 2017 May 8.
7
The structure of lombricine kinase: implications for phosphagen kinase conformational changes.
J Biol Chem. 2011 Mar 18;286(11):9338-50. doi: 10.1074/jbc.M110.202796. Epub 2011 Jan 6.
8
Rate-limiting domain and loop motions in arginine kinase.
Biochemistry. 2011 May 17;50(19):4011-8. doi: 10.1021/bi101664u. Epub 2011 Apr 22.
10
The putative catalytic bases have, at most, an accessory role in the mechanism of arginine kinase.
J Biol Chem. 2003 Jul 18;278(29):26952-7. doi: 10.1074/jbc.M212931200. Epub 2003 May 5.

引用本文的文献

1
A comprehensive review of arginine kinase proteins: What we need to know?
Biochem Biophys Rep. 2024 Oct 8;40:101837. doi: 10.1016/j.bbrep.2024.101837. eCollection 2024 Dec.
3
Arginine Kinase Activates Arginine for Phosphorylation by Pyramidalization and Polarization.
ACS Catal. 2024 Apr 16;14(9):6650-6658. doi: 10.1021/acscatal.4c00380. eCollection 2024 May 3.
4
Insight into Structural Aspects of Histidine 284 of Arginine Kinase.
Mol Cells. 2020 Sep 30;43(9):784-792. doi: 10.14348/molcells.2020.0136.
5
Natural Products Containing 'Rare' Organophosphorus Functional Groups.
Molecules. 2019 Feb 28;24(5):866. doi: 10.3390/molecules24050866.
6
The Sampling of Conformational Dynamics in Ambient-Temperature Crystal Structures of Arginine Kinase.
Structure. 2016 Oct 4;24(10):1658-1667. doi: 10.1016/j.str.2016.07.013. Epub 2016 Sep 1.
8
The substrate-free and -bound crystal structures of the duplicated taurocyamine kinase from the human parasite Schistosoma mansoni.
J Biol Chem. 2015 May 15;290(20):12951-63. doi: 10.1074/jbc.M114.628909. Epub 2015 Apr 2.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Overview of the CCP4 suite and current developments.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42. doi: 10.1107/S0907444910045749. Epub 2011 Mar 18.
3
Rate-limiting domain and loop motions in arginine kinase.
Biochemistry. 2011 May 17;50(19):4011-8. doi: 10.1021/bi101664u. Epub 2011 Apr 22.
4
The structure of lombricine kinase: implications for phosphagen kinase conformational changes.
J Biol Chem. 2011 Mar 18;286(11):9338-50. doi: 10.1074/jbc.M110.202796. Epub 2011 Jan 6.
5
Arginine kinase: joint crystallographic and NMR RDC analyses link substrate-associated motions to intrinsic flexibility.
J Mol Biol. 2011 Jan 14;405(2):479-96. doi: 10.1016/j.jmb.2010.11.007. Epub 2010 Nov 12.
6
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.
7
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
9
Intrinsic domain and loop dynamics commensurate with catalytic turnover in an induced-fit enzyme.
Structure. 2009 Oct 14;17(10):1356-67. doi: 10.1016/j.str.2009.08.014.
10
Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity.
FASEB J. 2010 Jan;24(1):242-52. doi: 10.1096/fj.09-140194. Epub 2009 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验