Suppr超能文献

背侧和腹侧海马体中的不同表现和θ动态。

Distinct representations and theta dynamics in dorsal and ventral hippocampus.

机构信息

Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, USA.

出版信息

J Neurosci. 2010 Feb 3;30(5):1777-87. doi: 10.1523/JNEUROSCI.4681-09.2010.

Abstract

Although anatomical, lesion, and imaging studies of the hippocampus indicate qualitatively different information processing along its septo-temporal axis, physiological mechanisms supporting such distinction are missing. We found fundamental differences between the dorsal (dCA3) and the ventral-most parts (vCA3) of the hippocampus in both environmental representation and temporal dynamics. Discrete place fields of dCA3 neurons evenly covered all parts of the testing environments. In contrast, vCA3 neurons (1) rarely showed continuous two-dimensional place fields, (2) differentiated open and closed arms of a radial maze, and (3) discharged similar firing patterns with respect to the goals, both on multiple arms of a radial maze and during opposite journeys in a zigzag maze. In addition, theta power and the fraction of theta-rhythmic neurons were substantially reduced in the ventral compared with dorsal hippocampus. We hypothesize that the spatial representation in the septo-temporal axis of the hippocampus is progressively decreased. This change is paralleled with a reduction of theta rhythm and an increased representation of nonspatial information.

摘要

尽管对海马体的解剖、病变和影像学研究表明其在隔颞轴上具有定性不同的信息处理方式,但支持这种区别的生理机制尚不清楚。我们发现,在环境表征和时间动态方面,海马体的背侧(dCA3)和最腹侧部分(vCA3)之间存在根本差异。dCA3 神经元的离散位置场均匀覆盖了测试环境的所有部分。相比之下,vCA3 神经元(1)很少表现出连续的二维位置场,(2)区分放射状迷宫的开臂和闭臂,(3)在放射状迷宫的多个臂上以及在之字形迷宫的相反行程中,对目标表现出相似的放电模式。此外,与背侧海马体相比,腹侧海马体的θ 功率和θ 节律神经元的分数明显降低。我们假设海马体在隔颞轴上的空间表示逐渐减少。这种变化与θ 节律的减少和非空间信息的增加表示相平行。

相似文献

1
Distinct representations and theta dynamics in dorsal and ventral hippocampus.
J Neurosci. 2010 Feb 3;30(5):1777-87. doi: 10.1523/JNEUROSCI.4681-09.2010.
2
Striatal versus hippocampal representations during win-stay maze performance.
J Neurophysiol. 2009 Mar;101(3):1575-87. doi: 10.1152/jn.91106.2008. Epub 2009 Jan 14.
5
Dissociation between dorsal and ventral hippocampal theta oscillations during decision-making.
J Neurosci. 2013 Apr 3;33(14):6212-24. doi: 10.1523/JNEUROSCI.2915-12.2013.
6
Spatial selectivity and theta phase precession in CA1 interneurons.
Hippocampus. 2007;17(2):161-74. doi: 10.1002/hipo.20253.
7
Both dorsal and ventral hippocampus contribute to spatial learning in Long-Evans rats.
Neurosci Lett. 2003 Jul 17;345(2):131-5. doi: 10.1016/s0304-3940(03)00473-7.
8
Spike phase precession persists after transient intrahippocampal perturbation.
Nat Neurosci. 2005 Jan;8(1):67-71. doi: 10.1038/nn1369. Epub 2004 Dec 12.
9
A study of hippocampal structure-function relations along the septo-temporal axis.
Hippocampus. 2012 Apr;22(4):680-92. doi: 10.1002/hipo.20928. Epub 2011 Apr 27.
10
Effects of environmental enrichment on anxiety responses, spatial memory and cytochrome c oxidase activity in adult rats.
Brain Res Bull. 2013 Sep;98:1-9. doi: 10.1016/j.brainresbull.2013.06.006. Epub 2013 Jul 4.

引用本文的文献

2
Individualized frequency and montage tACS to engage theta-gamma coupling and enhance working memory in mild cognitive impairment.
Front Psychiatry. 2025 Jun 2;16:1565881. doi: 10.3389/fpsyt.2025.1565881. eCollection 2025.
3
Dopamine D1-D2 signalling in hippocampus arbitrates approach and avoidance.
Nature. 2025 May 7. doi: 10.1038/s41586-025-08957-5.
4
The dorsal and ventral hippocampus contribute differentially to spatial working memory and spatial coding in the prefrontal cortex.
PLoS Biol. 2025 Apr 23;23(4):e3003140. doi: 10.1371/journal.pbio.3003140. eCollection 2025 Apr.
5
Prefrontal default-mode network interactions with posterior hippocampus during exploration.
bioRxiv. 2025 Mar 13:2025.03.12.642890. doi: 10.1101/2025.03.12.642890.
6
Phase Precession Relative to Turning Angle in Theta-Modulated Head Direction Cells.
Hippocampus. 2025 Mar;35(2):e70008. doi: 10.1002/hipo.70008.
7
Dorsal hippocampus represents locations to avoid as well as locations to approach during approach-avoidance conflict.
PLoS Biol. 2025 Jan 14;23(1):e3002954. doi: 10.1371/journal.pbio.3002954. eCollection 2025 Jan.
9
Hippocampal contextualization of social rewards in mice.
Nat Commun. 2024 Nov 3;15(1):9493. doi: 10.1038/s41467-024-53866-2.
10
Representations of stimulus meaning in the hippocampus.
bioRxiv. 2024 Oct 17:2024.10.14.618280. doi: 10.1101/2024.10.14.618280.

本文引用的文献

1
Fragmentation of grid cell maps in a multicompartment environment.
Nat Neurosci. 2009 Oct;12(10):1325-32. doi: 10.1038/nn.2396. Epub 2009 Sep 13.
2
Hippocampal theta oscillations are travelling waves.
Nature. 2009 May 28;459(7246):534-9. doi: 10.1038/nature08010.
3
From rapid place learning to behavioral performance: a key role for the intermediate hippocampus.
PLoS Biol. 2009 Apr 21;7(4):e1000089. doi: 10.1371/journal.pbio.1000089.
4
Heading-vector navigation based on head-direction cells and path integration.
Hippocampus. 2009 May;19(5):456-79. doi: 10.1002/hipo.20532.
6
Internally generated cell assembly sequences in the rat hippocampus.
Science. 2008 Sep 5;321(5894):1322-7. doi: 10.1126/science.1159775.
7
New insights on the subcortical representation of reward.
Curr Opin Neurobiol. 2008 Apr;18(2):203-8. doi: 10.1016/j.conb.2008.07.002. Epub 2008 Aug 11.
8
Finite scale of spatial representation in the hippocampus.
Science. 2008 Jul 4;321(5885):140-3. doi: 10.1126/science.1157086.
9
Place cells, grid cells, and the brain's spatial representation system.
Annu Rev Neurosci. 2008;31:69-89. doi: 10.1146/annurev.neuro.31.061307.090723.
10
Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point.
J Neurosci. 2007 Nov 7;27(45):12176-89. doi: 10.1523/JNEUROSCI.3761-07.2007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验