Suppr超能文献

酵母中线粒体-液泡信号通路的遗传剖析揭示了慢性氧化应激与液泡铁转运之间的联系。

Genetic dissection of a mitochondria-vacuole signaling pathway in yeast reveals a link between chronic oxidative stress and vacuolar iron transport.

机构信息

Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132, USA.

出版信息

J Biol Chem. 2010 Apr 2;285(14):10232-42. doi: 10.1074/jbc.M109.096859. Epub 2010 Feb 5.

Abstract

Deletion of two homologous genes, MRS3 and MRS4, that encode mitochondrial iron transporters affects the activity of the vacuolar iron importer Ccc1. Ccc1 levels are decreased in Deltamrs3Deltamrs4 cells, but the activity of the transporter is increased, resulting is reduced cytosolic iron. Overexpression of CCC1 in Deltamrs3Deltamrs4 cells results in a severe growth defect due to decreased cytosolic iron, referred to as the mitochondria-vacuole signaling (MVS) phenotype. Mutants were identified that suppress the MVS growth defect, and FRA1 was identified as a gene that suppresses the MVS phenotype. Overexpression of FRA1 suppresses altered transition metal metabolism in Deltamrs3Deltamrs4 cells, whereas deletion of FRA1 is synthetically lethal with Deltamrs3Deltamrs4. Fra1 binds to Tsa1, which encodes a thioredoxin-dependent peroxidase. Deletion of TSA1 or TRR1 is synthetically lethal in Deltamrs3Deltamrs4 cells, suggesting that Deltamrs3Deltamrs4 cells generate reactive oxygen metabolites. The generation of reactive oxygen metabolites in Deltamrs3Deltamrs4 cells was confirmed by use of the reporter molecule 2',7'-dichlorodihydrofluorescein diacetate. These results suggest that mitochondria-induced oxidant damage is responsible for activating Ccc1 and that Fra1 and Tsa1 can reduce oxidant damage.

摘要

两个同源基因 MRS3 和 MRS4 的缺失,它们编码线粒体铁转运体,会影响液泡铁转运体 Ccc1 的活性。在Δmrs3Δmrs4 细胞中 Ccc1 水平降低,但转运体的活性增加,导致细胞质铁减少。在Δmrs3Δmrs4 细胞中过表达 CCC1 会导致由于细胞质铁减少而出现严重的生长缺陷,这被称为线粒体-液泡信号(MVS)表型。鉴定出了能够抑制 MVS 生长缺陷的突变体,并且发现 FRA1 是一个能够抑制 MVS 表型的基因。FRA1 的过表达能够抑制Δmrs3Δmrs4 细胞中过渡金属代谢的改变,而 fra1 的缺失与Δmrs3Δmrs4 是合成致死的。Fra1 与编码硫氧还蛋白依赖过氧化物酶的 Tsa1 结合。TSA1 或 TRR1 的缺失在Δmrs3Δmrs4 细胞中是合成致死的,这表明Δmrs3Δmrs4 细胞会产生活性氧代谢物。通过使用报告分子 2',7'-二氯二氢荧光素二乙酸酯证实了Δmrs3Δmrs4 细胞中活性氧代谢物的产生。这些结果表明,线粒体诱导的氧化损伤负责激活 Ccc1,而 Fra1 和 Tsa1 可以减少氧化损伤。

相似文献

2
A mitochondrial-vacuolar signaling pathway in yeast that affects iron and copper metabolism.
J Biol Chem. 2004 Aug 6;279(32):33653-61. doi: 10.1074/jbc.M403146200. Epub 2004 May 25.
6
CCC1 is a transporter that mediates vacuolar iron storage in yeast.
J Biol Chem. 2001 Aug 3;276(31):29515-9. doi: 10.1074/jbc.M103944200. Epub 2001 Jun 4.
7
Iron toxicity in yeast: transcriptional regulation of the vacuolar iron importer Ccc1.
Curr Genet. 2018 Apr;64(2):413-416. doi: 10.1007/s00294-017-0767-7. Epub 2017 Oct 17.
9
Frataxin and mitochondrial carrier proteins, Mrs3p and Mrs4p, cooperate in providing iron for heme synthesis.
J Biol Chem. 2005 May 20;280(20):19794-807. doi: 10.1074/jbc.M500397200. Epub 2005 Mar 14.
10
The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane.
Biochim Biophys Acta. 2009 May;1788(5):1044-50. doi: 10.1016/j.bbamem.2009.03.004. Epub 2009 Mar 11.

引用本文的文献

1
Iron transport pathways in the human malaria parasite revealed by RNA-sequencing.
Front Cell Infect Microbiol. 2024 Nov 7;14:1480076. doi: 10.3389/fcimb.2024.1480076. eCollection 2024.
2
Converging Roles of the Metal Transporter SMF11 and the Ferric Reductase FRE1 in Iron Homeostasis of Candida albicans.
Mol Microbiol. 2024 Dec;122(6):879-895. doi: 10.1111/mmi.15326. Epub 2024 Nov 11.
3
Gene fusion and functional diversification of genes facilitate thermophilic fungal adaptation to temperature change.
Mycology. 2024 Apr 2;15(3):485-505. doi: 10.1080/21501203.2024.2324993. eCollection 2024.
4
Heme sensing and trafficking in fungi.
Fungal Biol Rev. 2023 Mar;43. doi: 10.1016/j.fbr.2022.09.002. Epub 2022 Oct 5.
6
The vacuolar iron transporter mediates iron detoxification in Toxoplasma gondii.
Nat Commun. 2023 Jun 20;14(1):3659. doi: 10.1038/s41467-023-39436-y.
7
Hypothetical protein FoDbp40 influences the growth and virulence of by regulating the expression of isocitrate lyase.
Front Microbiol. 2022 Nov 28;13:1050637. doi: 10.3389/fmicb.2022.1050637. eCollection 2022.
8
Adaptation of Species to High-Iron Conditions.
Int J Mol Sci. 2022 Nov 12;23(22):13965. doi: 10.3390/ijms232213965.
9
Aminopeptidases trim Xaa-Pro proteins, initiating their degradation by the Pro/N-degron pathway.
Proc Natl Acad Sci U S A. 2021 Oct 26;118(43). doi: 10.1073/pnas.2115430118.

本文引用的文献

1
Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency.
Cell Metab. 2008 Jun;7(6):555-64. doi: 10.1016/j.cmet.2008.04.010.
3
Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast.
Mol Cell Biol. 2008 Feb;28(4):1326-37. doi: 10.1128/MCB.01219-07. Epub 2007 Dec 10.
4
Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress.
J Biol Chem. 2007 Mar 9;282(10):7125-36. doi: 10.1074/jbc.M608293200. Epub 2007 Jan 10.
5
Regulation of the yeast TSA1 peroxiredoxin by ZAP1 is an adaptive response to the oxidative stress of zinc deficiency.
J Biol Chem. 2007 Jan 26;282(4):2184-95. doi: 10.1074/jbc.M606639200. Epub 2006 Nov 22.
8
Mitochondrial retrograde signaling.
Annu Rev Genet. 2006;40:159-85. doi: 10.1146/annurev.genet.40.110405.090613.
9
Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae.
J Biol Chem. 2006 Jun 30;281(26):17661-9. doi: 10.1074/jbc.M602165200. Epub 2006 Apr 28.
10
Mitoferrin is essential for erythroid iron assimilation.
Nature. 2006 Mar 2;440(7080):96-100. doi: 10.1038/nature04512.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验