Suppr超能文献

在进行“是/否”气味辨别任务期间,从嗅球到海马体的定向耦合。

Directional coupling from the olfactory bulb to the hippocampus during a go/no-go odor discrimination task.

机构信息

Centre National de la Recherche Scientifique Unité Mixte de Recherche 8195, Centre de Neurosciences Paris-Sud, Orsay, France.

出版信息

J Neurophysiol. 2010 May;103(5):2633-41. doi: 10.1152/jn.01075.2009. Epub 2010 Feb 17.

Abstract

The hippocampus and olfactory regions are anatomically close, and both play a major role in memory formation. However, the way they interact during odor processing is still unclear. In both areas, strong oscillations of the local field potential (LFP) can be recorded, and are modulated by behavior. In particular, in the olfactory system, the beta rhythm (15-35 Hz) is associated with cognitive processing of an olfactory stimulus. Using LFP recordings in the olfactory bulb and dorsal and ventral hippocampus during performance of an olfactory go/no-go task in rats, we previously showed that beta oscillations are also present in the hippocampus, coherent with those in the olfactory bulb, during odor sampling. In this study, we provide further insight into information transfer in the olfacto-hippocampal network by using directional coherence (DCOH estimate), a method based on the temporal relation between two or more signals in the frequency domain. In the theta band (6-12 Hz), coherence between the olfactory bulb (OB) and the hippocampus (HPC) is weak and can be both in the feedback and feedforward directions. However, at this frequency, modulation of the coupling between the dorsal and ventral hippocampus is seen during stimulus expectation versus odor processing. In the beta frequency band (15-35 Hz), analysis showed a strong unidirectional coupling from the OB to dorsal and ventral HPC, indicating that, during odor processing, beta oscillations in the hippocampus are driven by the olfactory bulb.

摘要

海马体和嗅觉区域在解剖学上是接近的,并且都在记忆形成中发挥主要作用。然而,它们在嗅觉处理过程中相互作用的方式仍不清楚。在这两个区域中,都可以记录到局部场电位(LFP)的强振荡,并受行为调节。特别是在嗅觉系统中,β节律(15-35 Hz)与嗅觉刺激的认知处理有关。在大鼠进行嗅觉 Go/No-Go 任务期间,使用嗅球和背侧和腹侧海马体的 LFP 记录,我们之前显示β振荡也存在于海马体中,与嗅球中的振荡相干,在气味采样期间。在这项研究中,我们通过使用方向相干性(DCOH 估计)提供了对嗅觉 - 海马网络中信息传递的进一步了解,这是一种基于两个或多个信号在频域中的时间关系的方法。在 theta 频段(6-12 Hz)中,嗅球(OB)和海马体(HPC)之间的相干性较弱,并且可以在反馈和前馈方向上。然而,在这个频率下,在刺激预期与气味处理期间,观察到背侧和腹侧海马体之间的耦合调制。在β频带(15-35 Hz)中,分析显示从 OB 到背侧和腹侧 HPC 的强单向耦合,表明在嗅觉处理过程中,海马体中的β振荡是由嗅球驱动的。

相似文献

1
Directional coupling from the olfactory bulb to the hippocampus during a go/no-go odor discrimination task.
J Neurophysiol. 2010 May;103(5):2633-41. doi: 10.1152/jn.01075.2009. Epub 2010 Feb 17.
2
An olfacto-hippocampal network is dynamically involved in odor-discrimination learning.
J Neurophysiol. 2007 Oct;98(4):2196-205. doi: 10.1152/jn.00524.2007. Epub 2007 Aug 15.
3
Theta oscillations and sensorimotor performance.
Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3863-8. doi: 10.1073/pnas.0407920102. Epub 2005 Feb 28.
4
A beta oscillation network in the rat olfactory system during a 2-alternative choice odor discrimination task.
J Neurophysiol. 2010 Aug;104(2):829-39. doi: 10.1152/jn.00166.2010. Epub 2010 Jun 10.
5
Odor- and state-dependent olfactory tubercle local field potential dynamics in awake rats.
J Neurophysiol. 2014 May;111(10):2109-23. doi: 10.1152/jn.00829.2013. Epub 2014 Mar 5.
6
Home-cage odors spatial cues elicit theta phase/gamma amplitude coupling between olfactory bulb and dorsal hippocampus.
Neuroscience. 2017 Nov 5;363:97-106. doi: 10.1016/j.neuroscience.2017.08.058. Epub 2017 Sep 7.
7
Gamma and Beta Oscillations Define a Sequence of Neurocognitive Modes Present in Odor Processing.
J Neurosci. 2016 Jul 20;36(29):7750-67. doi: 10.1523/JNEUROSCI.0569-16.2016.
8
Circuit oscillations in odor perception and memory.
Prog Brain Res. 2014;208:223-51. doi: 10.1016/B978-0-444-63350-7.00009-7.
9
Olfactory bulb gamma oscillations are enhanced with task demands.
J Neurosci. 2007 Aug 1;27(31):8358-65. doi: 10.1523/JNEUROSCI.1199-07.2007.
10
Cholinergic and behavior-dependent beta and gamma waves are coupled between olfactory bulb and hippocampus.
Hippocampus. 2024 Sep;34(9):464-490. doi: 10.1002/hipo.23622. Epub 2024 Jul 1.

引用本文的文献

1
Beyond anosmia: olfactory dysfunction as a common denominator in neurodegenerative and neurodevelopmental disorders.
Front Neurosci. 2024 Oct 30;18:1502779. doi: 10.3389/fnins.2024.1502779. eCollection 2024.
2
Olfactory bulb astrocytes link social transmission of stress to cognitive adaptation in male mice.
Nat Commun. 2024 Aug 18;15(1):7103. doi: 10.1038/s41467-024-51416-4.
3
The ventral hippocampus is activated in olfactory but not auditory threat memory.
Front Neural Circuits. 2024 Feb 27;18:1371130. doi: 10.3389/fncir.2024.1371130. eCollection 2024.
4
Hippocampal beta rhythms as a bridge between sensory learning and memory-guided decision-making.
Front Syst Neurosci. 2023 May 5;17:1187272. doi: 10.3389/fnsys.2023.1187272. eCollection 2023.
5
Signatures for viral infection and inflammation in the proximal olfactory system in familial Alzheimer's disease.
Neurobiol Aging. 2023 Mar;123:75-82. doi: 10.1016/j.neurobiolaging.2022.12.004. Epub 2022 Dec 13.
7
How the sense of smell influences cognition throughout life.
Neuroforum. 2022 Aug 26;28(3):177-185. doi: 10.1515/nf-2022-0007. Epub 2022 Jun 6.
8
Interactive neurorobotics: Behavioral and neural dynamics of agent interactions.
Front Psychol. 2022 Aug 17;13:897603. doi: 10.3389/fpsyg.2022.897603. eCollection 2022.
9
Brain regions associated with olfactory dysfunction in first episode psychosis patients.
World J Biol Psychiatry. 2023 Feb;24(2):178-186. doi: 10.1080/15622975.2022.2082526. Epub 2022 Jun 9.

本文引用的文献

2
Neural synchrony in cortical networks: history, concept and current status.
Front Integr Neurosci. 2009 Jul 30;3:17. doi: 10.3389/neuro.07.017.2009. eCollection 2009.
3
Neuronal gamma-band synchronization as a fundamental process in cortical computation.
Annu Rev Neurosci. 2009;32:209-24. doi: 10.1146/annurev.neuro.051508.135603.
4
Driving fast-spiking cells induces gamma rhythm and controls sensory responses.
Nature. 2009 Jun 4;459(7247):663-7. doi: 10.1038/nature08002. Epub 2009 Apr 26.
5
Olfactory oscillations: the what, how and what for.
Trends Neurosci. 2009 Apr;32(4):207-14. doi: 10.1016/j.tins.2008.11.008. Epub 2009 Feb 23.
7
A human intracranial study of long-range oscillatory coherence across a frontal-occipital-hippocampal brain network during visual object processing.
Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4399-404. doi: 10.1073/pnas.0708418105. Epub 2008 Mar 11.
8
Temporal envelope processing in the human auditory cortex: response and interconnections of auditory cortical areas.
Hear Res. 2008 Mar;237(1-2):1-18. doi: 10.1016/j.heares.2007.12.003. Epub 2007 Dec 28.
9
An olfacto-hippocampal network is dynamically involved in odor-discrimination learning.
J Neurophysiol. 2007 Oct;98(4):2196-205. doi: 10.1152/jn.00524.2007. Epub 2007 Aug 15.
10
Olfactory bulb gamma oscillations are enhanced with task demands.
J Neurosci. 2007 Aug 1;27(31):8358-65. doi: 10.1523/JNEUROSCI.1199-07.2007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验