Suppr超能文献

嗅球γ振荡会随着任务需求而增强。

Olfactory bulb gamma oscillations are enhanced with task demands.

作者信息

Beshel Jennifer, Kopell Nancy, Kay Leslie M

机构信息

Department of Psychology and Institute for Mind and Biology, The University of Chicago, Chicago, Illinois 60637, USA.

出版信息

J Neurosci. 2007 Aug 1;27(31):8358-65. doi: 10.1523/JNEUROSCI.1199-07.2007.

Abstract

Fast oscillations in neural assemblies have been proposed as a mechanism to facilitate stimulus representation in a variety of sensory systems across animal species. In the olfactory system, intervention studies suggest that oscillations in the gamma frequency range play a role in fine odor discrimination. However, there is still no direct evidence that such oscillations are intrinsically altered in intact systems to aid in stimulus disambiguation. Here we show that gamma oscillatory power in the rat olfactory bulb during a two-alternative choice task is modulated in the intact system according to task demands with dramatic increases in gamma power during discrimination of molecularly similar odorants in contrast to dissimilar odorants. This elevation in power evolves over the course of criterion performance, is specific to the gamma frequency band (65-85 Hz), and is independent of changes in the theta or beta frequency band range. Furthermore, these high amplitude gamma oscillations are restricted to the olfactory bulb, such that concurrent piriform cortex recordings show no evidence of enhanced gamma power during these high-amplitude events. Our results display no modulation in the power of beta oscillations (15-28 Hz) shown previously to increase with odor learning in a Go/No-go task, and we suggest that the oscillatory profile of the olfactory system may be influenced by both odor discrimination demands and task type. The results reported here indicate that enhancement of local gamma power may reflect a switch in the dynamics of the system to a strategy that optimizes stimulus resolution when input signals are ambiguous.

摘要

神经集合中的快速振荡被认为是一种机制,可促进动物物种各种感觉系统中的刺激表征。在嗅觉系统中,干预研究表明,伽马频率范围内的振荡在精细气味辨别中起作用。然而,仍然没有直接证据表明,在完整系统中,这种振荡会内在地改变以帮助消除刺激的歧义。在这里,我们表明,在完整系统中,大鼠嗅球在二选一任务期间的伽马振荡功率根据任务需求进行调制,与不同气味剂相比,在辨别分子相似的气味剂时伽马功率会急剧增加。这种功率升高在标准表现过程中逐渐形成,特定于伽马频段(65 - 85赫兹),并且与theta或beta频段范围内的变化无关。此外,这些高振幅伽马振荡仅限于嗅球,因此同时进行的梨状皮质记录显示在这些高振幅事件期间没有伽马功率增强的证据。我们的结果显示,先前在Go/No-go任务中随着气味学习而增加的beta振荡(15 - 28赫兹)功率没有调制,并且我们认为嗅觉系统的振荡特征可能受到气味辨别需求和任务类型的影响。这里报告的结果表明,局部伽马功率的增强可能反映了系统动力学向一种在输入信号模糊时优化刺激分辨率的策略的转变。

相似文献

1
Olfactory bulb gamma oscillations are enhanced with task demands.
J Neurosci. 2007 Aug 1;27(31):8358-65. doi: 10.1523/JNEUROSCI.1199-07.2007.
2
Gamma and Beta Oscillations Define a Sequence of Neurocognitive Modes Present in Odor Processing.
J Neurosci. 2016 Jul 20;36(29):7750-67. doi: 10.1523/JNEUROSCI.0569-16.2016.
3
A beta oscillation network in the rat olfactory system during a 2-alternative choice odor discrimination task.
J Neurophysiol. 2010 Aug;104(2):829-39. doi: 10.1152/jn.00166.2010. Epub 2010 Jun 10.
4
Circuit oscillations in odor perception and memory.
Prog Brain Res. 2014;208:223-51. doi: 10.1016/B978-0-444-63350-7.00009-7.
5
Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex.
J Neurosci. 2019 Dec 11;39(50):10002-10018. doi: 10.1523/JNEUROSCI.1234-19.2019. Epub 2019 Oct 31.
6
Sniffing shapes the dynamics of olfactory bulb gamma oscillations in awake behaving rats.
Eur J Neurosci. 2011 Sep;34(5):787-99. doi: 10.1111/j.1460-9568.2011.07800.x. Epub 2011 Aug 8.
7
An olfacto-hippocampal network is dynamically involved in odor-discrimination learning.
J Neurophysiol. 2007 Oct;98(4):2196-205. doi: 10.1152/jn.00524.2007. Epub 2007 Aug 15.
8
Chemical factors determine olfactory system beta oscillations in waking rats.
J Neurophysiol. 2007 Jul;98(1):394-404. doi: 10.1152/jn.00124.2007. Epub 2007 Apr 18.
10
Directional coupling from the olfactory bulb to the hippocampus during a go/no-go odor discrimination task.
J Neurophysiol. 2010 May;103(5):2633-41. doi: 10.1152/jn.01075.2009. Epub 2010 Feb 17.

引用本文的文献

1
Sex differences in olfactory behavior and neurophysiology in Long Evans rats.
J Neurophysiol. 2025 Jan 1;133(1):257-267. doi: 10.1152/jn.00222.2024. Epub 2024 Dec 19.
2
Beyond anosmia: olfactory dysfunction as a common denominator in neurodegenerative and neurodevelopmental disorders.
Front Neurosci. 2024 Oct 30;18:1502779. doi: 10.3389/fnins.2024.1502779. eCollection 2024.
3
Value-related learning in the olfactory bulb occurs through pathway-dependent perisomatic inhibition of mitral cells.
PLoS Biol. 2024 Mar 1;22(3):e3002536. doi: 10.1371/journal.pbio.3002536. eCollection 2024 Mar.
5
Early development of olfactory circuit function.
Front Cell Neurosci. 2023 Jul 26;17:1225186. doi: 10.3389/fncel.2023.1225186. eCollection 2023.
7
Over and above frequency: Gamma oscillations as units of neural circuit operations.
Neuron. 2023 Apr 5;111(7):936-953. doi: 10.1016/j.neuron.2023.02.026.
10
Structural spine plasticity: Learning and forgetting of odor-specific subnetworks in the olfactory bulb.
PLoS Comput Biol. 2022 Oct 24;18(10):e1010338. doi: 10.1371/journal.pcbi.1010338. eCollection 2022 Oct.

本文引用的文献

1
Speed-accuracy tradeoff in olfaction.
Neuron. 2006 Aug 3;51(3):351-8. doi: 10.1016/j.neuron.2006.07.013.
2
When good enough is best.
Neuron. 2006 Aug 3;51(3):277-8. doi: 10.1016/j.neuron.2006.07.015.
3
Learning-induced oscillatory activities correlated to odour recognition: a network activity.
Eur J Neurosci. 2006 Apr;23(7):1801-10. doi: 10.1111/j.1460-9568.2006.04711.x.
4
Computation in the olfactory system.
Chem Senses. 2005 Nov;30(9):801-13. doi: 10.1093/chemse/bji072. Epub 2005 Nov 2.
5
Acetylcholine release in hippocampus and striatum during testing on a rewarded spontaneous alternation task.
Neurobiol Learn Mem. 2005 Sep;84(2):93-101. doi: 10.1016/j.nlm.2005.05.001.
6
Background gamma rhythmicity and attention in cortical local circuits: a computational study.
Proc Natl Acad Sci U S A. 2005 May 10;102(19):7002-7. doi: 10.1073/pnas.0502366102. Epub 2005 May 3.
7
Theta oscillations and sensorimotor performance.
Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3863-8. doi: 10.1073/pnas.0407920102. Epub 2005 Feb 28.
8
Mechanism and circuitry for clustering and fine discrimination of odors in insects.
Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17861-6. doi: 10.1073/pnas.0407858101. Epub 2004 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验