Suppr超能文献

超越频率:伽马振荡作为神经回路运作的单位。

Over and above frequency: Gamma oscillations as units of neural circuit operations.

机构信息

Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.

Bernstein Center for Computational Neuroscience, Faculty of Medicine, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany.

出版信息

Neuron. 2023 Apr 5;111(7):936-953. doi: 10.1016/j.neuron.2023.02.026.

Abstract

Gamma oscillations (∼30-150 Hz) are widespread correlates of neural circuit functions. These network activity patterns have been described across multiple animal species, brain structures, and behaviors, and are usually identified based on their spectral peak frequency. Yet, despite intensive investigation, whether gamma oscillations implement causal mechanisms of specific brain functions or represent a general dynamic mode of neural circuit operation remains unclear. In this perspective, we review recent advances in the study of gamma oscillations toward a deeper understanding of their cellular mechanisms, neural pathways, and functional roles. We discuss that a given gamma rhythm does not per se implement any specific cognitive function but rather constitutes an activity motif reporting the cellular substrates, communication channels, and computational operations underlying information processing in its generating brain circuit. Accordingly, we propose shifting the attention from a frequency-based to a circuit-level definition of gamma oscillations.

摘要

伽马振荡(∼30-150 Hz)是神经回路功能的广泛相关物。这些网络活动模式已在多种动物物种、脑结构和行为中得到描述,通常基于其频谱峰值频率进行识别。然而,尽管进行了深入的研究,但伽马振荡是否实现了特定脑功能的因果机制,或者是否代表了神经回路操作的一般动态模式仍然不清楚。在这个观点中,我们回顾了伽马振荡研究的最新进展,以期更深入地了解其细胞机制、神经通路和功能作用。我们讨论了特定的伽马节律本身并不执行任何特定的认知功能,而是构成了一种活动模式,报告了其产生的脑回路中信息处理的细胞基质、通信通道和计算操作。因此,我们建议将注意力从基于频率的定义转移到基于回路水平的伽马振荡定义。

相似文献

1
Over and above frequency: Gamma oscillations as units of neural circuit operations.
Neuron. 2023 Apr 5;111(7):936-953. doi: 10.1016/j.neuron.2023.02.026.
2
Snapshots of the Brain in Action: Local Circuit Operations through the Lens of γ Oscillations.
J Neurosci. 2016 Oct 12;36(41):10496-10504. doi: 10.1523/JNEUROSCI.1021-16.2016.
4
Gamma and Beta Oscillations Define a Sequence of Neurocognitive Modes Present in Odor Processing.
J Neurosci. 2016 Jul 20;36(29):7750-67. doi: 10.1523/JNEUROSCI.0569-16.2016.
6
Deciphering the code: Identifying true gamma neural oscillations.
Exp Neurol. 2022 Nov;357:114205. doi: 10.1016/j.expneurol.2022.114205. Epub 2022 Aug 17.
8
The gamma rhythm as a guardian of brain health.
Elife. 2024 Nov 20;13:e100238. doi: 10.7554/eLife.100238.
9
How Close Are We to Understanding What (if Anything) γ Oscillations Do in Cortical Circuits?
J Neurosci. 2016 Oct 12;36(41):10489-10495. doi: 10.1523/JNEUROSCI.0990-16.2016.
10
Suppression of Low-Frequency Gamma Oscillations by Activation of 40-Hz Oscillation.
Cereb Cortex. 2022 Jun 16;32(13):2785-2796. doi: 10.1093/cercor/bhab381.

引用本文的文献

1
The role of feedforward and feedback inhibition in modulating theta-gamma cross-frequency interactions in neural circuits.
PLoS Comput Biol. 2025 Aug 13;21(8):e1013363. doi: 10.1371/journal.pcbi.1013363. eCollection 2025 Aug.
2
Measuring the neurodevelopmental trajectory of excitatory-inhibitory balance via visual gamma oscillations.
Imaging Neurosci (Camb). 2025 Apr 6;3. doi: 10.1162/imag_a_00527. eCollection 2025.
3
Regular physical activity affects brain activities in old individuals: an observational study.
PLoS One. 2025 Jul 2;20(7):e0326163. doi: 10.1371/journal.pone.0326163. eCollection 2025.
5
Brain sources composing irregular field potentials have unique temporal signatures.
Cereb Cortex. 2025 Jun 4;35(6). doi: 10.1093/cercor/bhaf135.
6
Spatio-temporal organization of network activity patterns in the hippocampus.
Cell Rep. 2025 Jun 4;44(6):115808. doi: 10.1016/j.celrep.2025.115808.
8
CB-1 receptor agonist drastically changes oscillatory activity, defining active sleep.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2411063122. doi: 10.1073/pnas.2411063122. Epub 2025 Apr 18.
9
Degradation-aware neural imputation: Advancing decoding stability in brain machine interfaces.
APL Bioeng. 2025 Apr 16;9(2):026106. doi: 10.1063/5.0250296. eCollection 2025 Jun.

本文引用的文献

1
Neurogliaform cells dynamically decouple neuronal synchrony between brain areas.
Science. 2022 Jul 15;377(6603):324-328. doi: 10.1126/science.abo3355. Epub 2022 Jul 14.
3
Extrinsic control and intrinsic computation in the hippocampal CA1 circuit.
Neuron. 2022 Feb 16;110(4):658-673.e5. doi: 10.1016/j.neuron.2021.11.015. Epub 2021 Dec 9.
4
Brain rhythms define distinct interaction networks with differential dependence on anatomy.
Neuron. 2021 Dec 1;109(23):3862-3878.e5. doi: 10.1016/j.neuron.2021.09.052. Epub 2021 Oct 20.
5
Narrow and Broad γ Bands Process Complementary Visual Information in Mouse Primary Visual Cortex.
eNeuro. 2021 Nov 4;8(6). doi: 10.1523/ENEURO.0106-21.2021. Print 2021 Nov-Dec.
6
A mechanism for inter-areal coherence through communication based on connectivity and oscillatory power.
Neuron. 2021 Dec 15;109(24):4050-4067.e12. doi: 10.1016/j.neuron.2021.09.037. Epub 2021 Oct 11.
7
Neural representations of space in the hippocampus of a food-caching bird.
Science. 2021 Jul 16;373(6552):343-348. doi: 10.1126/science.abg2009.
8
Within-cycle instantaneous frequency profiles report oscillatory waveform dynamics.
J Neurophysiol. 2021 Oct 1;126(4):1190-1208. doi: 10.1152/jn.00201.2021. Epub 2021 Aug 18.
9
Cortical gamma-band resonance preferentially transmits coherent input.
Cell Rep. 2021 May 4;35(5):109083. doi: 10.1016/j.celrep.2021.109083.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验