Suppr超能文献

微流控快速混合实现均一的脂质-聚合物和脂质-量子点纳米颗粒的单步组装。

Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing.

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

ACS Nano. 2010 Mar 23;4(3):1671-9. doi: 10.1021/nn901433u.

Abstract

A key challenge in the synthesis of multicomponent nanoparticles (NPs) for therapy or diagnosis is obtaining reproducible monodisperse NPs with a minimum number of preparation steps. Here we report the use of microfluidic rapid mixing using hydrodynamic flow focusing in combination with passive mixing structures to realize the self-assembly of monodisperse lipid-polymer and lipid-quantum dot (QD) NPs in a single mixing step. These NPs are composed of a polymeric core for drug encapsulation or a QD core for imaging purposes, a hydrophilic polymeric shell, and a lipid monolayer at the interface of the core and the shell. In contrast to slow mixing of lipid and polymeric solutions, rapid mixing directly results in formation of homogeneous NPs with relatively narrow size distribution that obviates the need for subsequent thermal or mechanical agitation for homogenization. We identify rapid mixing conditions that result in formation of homogeneous NPs and show that self-assembly of polymeric core occurs independent of the lipid component, which only provides stability against aggregation over time and in the presence of high salt concentrations. Physicochemical properties of the NPs including size (35-180 nm) and zeta potential (-10 to +20 mV in PBS) are controlled by simply varying the composition and concentration of precursors. This method for preparation of hybrid NPs in a single mixing step may be useful for combinatorial synthesis of NPs with different properties for imaging and drug delivery applications.

摘要

在合成用于治疗或诊断的多组分纳米粒子(NPs)时,一个关键的挑战是获得具有最小制备步骤的重现性单分散 NPs。在这里,我们报告了使用微流控快速混合,结合被动混合结构,在单个混合步骤中实现单分散脂质-聚合物和脂质-量子点(QD)NPs 的自组装。这些 NPs 由用于药物包封的聚合物核、用于成像的 QD 核、亲水性聚合物壳和核与壳之间的脂质单层组成。与脂质和聚合物溶液的缓慢混合相比,快速混合直接导致形成相对较窄尺寸分布的均匀 NPs,从而无需后续的热或机械搅拌来实现均匀化。我们确定了导致形成均匀 NPs 的快速混合条件,并表明聚合物核的自组装独立于脂质成分,脂质成分仅提供了随着时间的推移和在高盐浓度下防止聚集的稳定性。NPs 的物理化学性质包括尺寸(35-180nm)和 Zeta 电位(PBS 中为-10 至+20mV),通过简单地改变前体的组成和浓度来控制。这种在单个混合步骤中制备杂化 NPs 的方法可能对用于成像和药物输送应用的具有不同性质的 NPs 的组合合成有用。

相似文献

2
Microfluidic-Based Holonomic Constraints of siRNA in the Kernel of Lipid/Polymer Hybrid Nanoassemblies for Improving Stable and Safe In Vivo Delivery.
ACS Appl Mater Interfaces. 2020 Apr 1;12(13):14839-14854. doi: 10.1021/acsami.9b22781. Epub 2020 Mar 20.
3
Microfluidic platform for controlled synthesis of polymeric nanoparticles.
Nano Lett. 2008 Sep;8(9):2906-12. doi: 10.1021/nl801736q. Epub 2008 Jul 26.
4
Microfluidic Nanoparticles for Drug Delivery.
Small. 2022 Sep;18(36):e2106580. doi: 10.1002/smll.202106580. Epub 2022 Apr 9.
5
Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.
Eur J Pharm Biopharm. 2013 Nov;85(3 Pt A):427-43. doi: 10.1016/j.ejpb.2013.07.002. Epub 2013 Jul 17.
6
Microfluidic technologies for nanoparticle formation.
Lab Chip. 2022 Feb 1;22(3):512-529. doi: 10.1039/d1lc00812a.
7
Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functionalnanoparticles.
Mater Sci Eng C Mater Biol Appl. 2020 Jun;111:110768. doi: 10.1016/j.msec.2020.110768. Epub 2020 Feb 22.
9
Assembly of Fluorescent Polymer Nanoparticles Using Different Microfluidic Mixers.
Langmuir. 2022 Jul 5;38(26):7945-7955. doi: 10.1021/acs.langmuir.2c00534. Epub 2022 Jun 22.

引用本文的文献

2
Lipid-Polymer Hybrid Nanoparticles as a Smart Drug Delivery System for Peptide/Protein Delivery.
Pharmaceutics. 2025 Jun 19;17(6):797. doi: 10.3390/pharmaceutics17060797.
3
On-Chip De Novo Production of mRNA Vaccine in Lipid Nanoparticles.
Small. 2025 Aug;21(32):e2500114. doi: 10.1002/smll.202500114. Epub 2025 Jun 23.
5
Antibody-Nanoparticle Conjugates in Therapy: Combining the Best of Two Worlds.
Small. 2025 Apr;21(15):e2409635. doi: 10.1002/smll.202409635. Epub 2025 Mar 6.
6
A perspective of lipid nanoparticles for RNA delivery.
Exploration (Beijing). 2024 Apr 15;4(6):20230147. doi: 10.1002/EXP.20230147. eCollection 2024 Dec.
7
Lipid polymer hybrid nanoparticles against lung cancer and their application as inhalable formulation.
Nanomedicine (Lond). 2024;19(25):2113-2133. doi: 10.1080/17435889.2024.2387530. Epub 2024 Aug 15.
8
Nanoparticles (NPs)-mediated lncMALAT1 silencing to reverse cisplatin resistance for effective hepatocellular carcinoma therapy.
Front Pharmacol. 2024 Jul 30;15:1437071. doi: 10.3389/fphar.2024.1437071. eCollection 2024.
10
Nanotechnology-based delivery systems to overcome drug resistance in cancer.
Med Rev (2021). 2024 Feb 20;4(1):5-30. doi: 10.1515/mr-2023-0058. eCollection 2024 Feb.

本文引用的文献

2
Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform.
ACS Nano. 2008 Aug;2(8):1696-702. doi: 10.1021/nn800275r.
3
Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups.
Biomaterials. 2009 Apr;30(12):2231-40. doi: 10.1016/j.biomaterials.2009.01.005. Epub 2009 Jan 23.
4
PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery.
Biomaterials. 2009 Mar;30(8):1627-34. doi: 10.1016/j.biomaterials.2008.12.013. Epub 2008 Dec 25.
5
Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery.
Angew Chem Int Ed Engl. 2008;47(38):7284-8. doi: 10.1002/anie.200801810.
6
Microfluidic platform for controlled synthesis of polymeric nanoparticles.
Nano Lett. 2008 Sep;8(9):2906-12. doi: 10.1021/nl801736q. Epub 2008 Jul 26.
7
Nanocarriers as an emerging platform for cancer therapy.
Nat Nanotechnol. 2007 Dec;2(12):751-60. doi: 10.1038/nnano.2007.387.
8
Biopolymer microparticle and nanoparticle formation within a microfluidic device.
Langmuir. 2008 Jun 1;24(13):6937-45. doi: 10.1021/la703339u. Epub 2008 May 30.
9
Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers.
Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2586-91. doi: 10.1073/pnas.0711714105. Epub 2008 Feb 13.
10
Characterization of nanoparticles for therapeutics.
Nanomedicine (Lond). 2007 Dec;2(6):789-803. doi: 10.2217/17435889.2.6.789.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验