Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden.
PLoS One. 2010 Feb 16;5(2):e9233. doi: 10.1371/journal.pone.0009233.
Trimethoprim resistance is increasing in Enterobacteriaceae. In 2004-2006 an intervention on trimethoprim use was conducted in Kronoberg County, Sweden, resulting in 85% reduction in trimethoprim prescriptions. We investigated the distribution of dihydrofolate reductase (dfr)-genes and integrons in Escherichia coli and Klebsiella pneumoniae and the effect of the intervention on this distribution.
METHODOLOGY/PRINCIPAL FINDINGS: Consecutively isolated E. coli (n = 320) and K. pneumoniae (n = 54) isolates phenotypically resistant to trimethoprim were studied. All were investigated for the presence of dfrA1, dfrA5, dfrA7, dfrA8, dfrA12, dfrA14, dfrA17 and integrons class I and II. Isolates negative for the seven dfr-genes (n = 12) were also screened for dfr2d, dfrA3, dfrA9, dfrA10, dfrA24 and dfrA26. These genes accounted for 96% of trimethoprim resistance in E. coli and 69% in K. pneumoniae. The most prevalent was dfrA1 in both species. This was followed by dfrA17 in E. coli which was only found in one K. pneumoniae isolate. Class I and II Integrons were more common in E. coli (85%) than in K. pneumoniae (57%). The distribution of dfr-genes did not change during the course of the 2-year intervention.
CONCLUSIONS/SIGNIFICANCE: The differences observed between the studied species in terms of dfr-gene and integron prevalence indicated a low rate of dfr-gene transfer between these two species and highlighted the possible role of narrow host range plasmids in the spread of trimethoprim resistance. The stability of dfr-genes, despite large changes in the selective pressure, indirectly suggests a low fitness cost of dfr-gene carriage.
肠杆菌科的三苯甲基耐药性正在增加。2004-2006 年,瑞典 Kronoberg 县对三苯甲基的使用进行了干预,导致三苯甲基处方减少了 85%。我们调查了二氢叶酸还原酶(dfr)基因和整合子在大肠埃希菌和肺炎克雷伯菌中的分布,以及干预对这种分布的影响。
方法/主要发现:连续分离出的 320 株大肠埃希菌和 54 株肺炎克雷伯菌对三苯甲基表型耐药。所有菌株均检测了 dfrA1、dfrA5、dfrA7、dfrA8、dfrA12、dfrA14、dfrA17 和 I 类和 II 类整合子。对 7 个 dfr 基因均为阴性的菌株(n = 12),也检测了 dfr2d、dfrA3、dfrA9、dfrA10、dfrA24 和 dfrA26。这些基因占大肠埃希菌和肺炎克雷伯菌对三苯甲基耐药的 96%和 69%。最常见的是两种菌中的 dfrA1。其次是大肠埃希菌中的 dfrA17,仅在一株肺炎克雷伯菌中发现。I 类和 II 类整合子在大肠埃希菌中的发生率(85%)高于肺炎克雷伯菌(57%)。在为期两年的干预过程中,dfr 基因的分布没有改变。
结论/意义:在所研究的两种物种中,dfr 基因和整合子的流行率存在差异,表明这两种物种之间 dfr 基因转移的频率较低,并突出了窄宿主范围质粒在三苯甲基耐药性传播中的可能作用。尽管选择压力发生了巨大变化,但 dfr 基因的稳定性间接表明,携带 dfr 基因的代价可能较低。